Chapter 2: Continuity and limit of the function

Notation: $\forall a \in \mathbb{R} \ \forall \varepsilon > 0$ we denote

- *O*_ε(*a*) = (*a* − ε, *a* + ε) ε-neighbourhood of a point *a O*_ε⁺(*a*) = [*a*, *a* + ε) right ε-neighbourhood *O*_ε⁻(*a*) = (*a* − ε, *a*] left ε-neighbourhood
 *P*_ε(*a*) = *O*_ε(*a*)\{*a*} punctured ε-neighbourhood of a point *a P*_ε⁺(*a*) = (*a*, *a* + ε) punctured right ε-neighbourhood
 - $\mathcal{P}_{\varepsilon}^{-}(a) = (a \varepsilon, a)$ punctured left ε -neighbourhood
- $x \rightarrow a$ x "tends to" a

x takes values arbitrarily close to a

$$x \rightarrow a+, x \rightarrow a-, x \rightarrow +\infty, x \rightarrow -\infty$$

Definition: Consider a function *f* defined in a neighbourhood of *a*. We say that *f* is continuous at point $a \in D(f)$ if

 $\forall \mathcal{O}_{\varepsilon}(f(a)) \exists \mathcal{O}_{\delta}(a) : f(\mathcal{O}_{\delta}(a)) \subseteq \mathcal{O}_{\varepsilon}(f(a)).$

Equivalently:

$$\forall \varepsilon > \mathbf{0} \ \exists \delta > \mathbf{0} : |\mathbf{x} - \mathbf{a}| < \delta \Rightarrow |f(\mathbf{x}) - f(\mathbf{a})| < \varepsilon.$$

Definition: We say that f is continuous on an open interval (a, b) if it is continuous at each point of (a, b).

Definition: We say that a function *f* is continuous from the right (right-hand side continuous) /continuous from the left (left-hand side continuous) at point $a \in D(f)$ if

 $\forall \mathcal{O}_{\varepsilon}(f(a)) \exists \mathcal{O}_{\delta}^{+}(a) : \quad f(\mathcal{O}_{\delta}^{+}(a)) \subseteq \mathcal{O}_{\varepsilon}(f(a))$ $\forall \mathcal{O}_{\varepsilon}(f(a)) \exists \mathcal{O}_{\delta}^{-}(a) : \quad f(\mathcal{O}_{\delta}^{-}(a)) \subseteq \mathcal{O}_{\varepsilon}(f(a))$

Definition: We say that a function f is continuous on a closed interval [a, b] if it is

- continuous at each point of (a, b),
- continuous from the right at point a,
- continuous from the left at point *b*.

Theorem: Let *f* and *g* be functions continuous at point *a*. Then functions |f|, $f \pm g$, $f \cdot g$ are continuous at point *a*. Furthermore if $g(a) \neq 0$ then $\frac{f}{g}$ is continuous at point *a*.

Theorem: If

function y = f(x) is continuous at point x = a,

function z = g(y) is continuous at point y = f(a),

then a composition h(x) = g(f(x)) is continuous at point x = a.

Definition: Let $f : D(f) \to \mathbb{R}$ be defined in some neighbourhood $\mathcal{P}(a) \subseteq D(f)$. We say that function f has limit $A \in \mathbb{R}$ at point a (denote $\lim_{x \to a} f(x) = A$) if

$$orall \mathcal{O}_{arepsilon}(oldsymbol{A}) \ \exists \mathcal{P}_{\delta}(oldsymbol{a}) : \quad f(\mathcal{P}_{\delta}(oldsymbol{a})) \subset \mathcal{O}_{arepsilon}(oldsymbol{A})$$

or equivalently

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \quad 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon$$

Theorem: Function *f* has at most one limit at point *a*.

Remark: We are interested in small ε (i.e. close to zero).

Calculation of the limits (1)

Theorem: Function *f* is continuous at point *a* if and only if $\lim_{x \to a} f(x) = f(a)$.

Theorem: Let $f : D(f) \to \mathbb{R}$, $g : D(g) \to \mathbb{R}$, $a \in \mathbb{R}$. $\exists \mathcal{P}(a) : \quad (\forall x \in \mathcal{P}(a) : f(x) = g(x)) \Rightarrow \lim_{x \to a} f(x) = \lim_{x \to a} g(x)$

Squeeze theorem (Sandwich theorem):

Let the following two conditions hold:

$$\forall x \in \mathcal{P}(a): g(x) \leq f(x) \leq h(x)$$

$$\lim_{x\to a} g(x) = \lim_{x\to a} h(x)$$

then there exists $\lim_{x\to a} f(x)$ and is equal to $\lim_{x\to a} g(x)$.

Calculation of the limits (2)

Theorem: Let $\lim_{x \to a} f(x) = A$ and $\lim_{x \to a} g(x) = B$, where $A, B \in \mathbb{R}$. It holds:

(i)
$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = A \pm B$$

(ii)
$$\lim_{x \to a} (f(x) c dotg(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = A \cdot B$$

(iii) if $B \neq 0$ then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = (\lim_{x \to a} f(x)) / (\lim_{x \to a} g(x)) = \frac{A}{B}$$

Theorem (composition of functions): Let $\lim_{x\to a} g(x) = A$ and let the function *f* be continuous at point *A*. Then

$$\lim_{x\to a}f(g(x))=f(A).$$

Remark:

$$\lim_{x\to a} [f(x)]^{g(x)} = \lim_{x\to a} e^{g(x)\ln f(x)}$$

One sided limits

Definition: Let function $f : D(f) \to \mathbb{R}$ be defined on some $\mathcal{P}^+(a) \subseteq D(f)$. We say that *f* has right-hand limit $A \in \mathbb{R}$ at point *a* (symbolically $\lim_{x \to a^+} f(x) = A$) if

$$orall \mathcal{O}_arepsilon(oldsymbol{A}) \exists \mathcal{P}^+_\delta(oldsymbol{a}) : \quad f(\mathcal{P}^+_\delta(oldsymbol{a})) \subset \mathcal{O}_arepsilon(oldsymbol{A})$$

Definition: Let function $f : D(f) \to \mathbb{R}$ be defined on some $\mathcal{P}^{-}(a) \subseteq D(f)$. We say that *f* has left-hand limit $A \in \mathbb{R}$ at point *a* (symbolically $\lim_{x \to a^{-}} f(x) = A$) if

$$\forall \mathcal{O}_{\varepsilon}(\boldsymbol{A}) \exists \mathcal{P}_{\delta}^{-}(\boldsymbol{a}) : \quad f(\mathcal{P}_{\delta}^{-}(\boldsymbol{a})) \subset \mathcal{O}_{\varepsilon}(\boldsymbol{A})$$

Theorem: $\lim_{x \to a} f(x)$ exists if and only if $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$. Then

$$\lim_{x\to a} f(x) = \lim_{x\to a+} f(x) = \lim_{x\to a-} f(x).$$

Theorems for limits hold also for one-sided limits:

- (i) f has at point a at most one left- and right-hand limit
- (ii) *f* is left-hand (right-hand) side continuous at point *a* if and only if $\lim_{x \to a \pm} f(x) = f(a)$

(iii)
$$f(x) = g(x)$$
 for $x \in \mathcal{P}^{\pm}(a) \Rightarrow \lim_{x \to a \pm} f(x) = \lim_{x \to a \pm} g(x)$

(iv) The squeeze theorem:

$$\forall x \in \mathcal{P}^{\pm}(a) : g(x) \leq f(x) \leq h(x) \Rightarrow \lim_{x \to a\pm} f(x) = \lim_{x \to a\pm} g(x)$$
$$\lim_{x \to a\pm} g(x) = \lim_{x \to a\pm} h(x)$$
$$(v) \quad \lim_{x \to a\pm} (f(x) \pm g(x)) = \lim_{x \to a\pm} f(x) \pm \lim_{x \to a\pm} g(x)$$
$$(vi) \quad \lim_{x \to a\pm} \frac{f(x)}{g(x)} = (\lim_{x \to a\pm} f(x)) / (\lim_{x \to a\pm} g(x)) \text{ if } \lim_{x \to a\pm} g(x) \neq 0$$

(vii) $\lim_{\substack{x \to a \pm \\ \text{if } f \text{ is right-(left-)hand side conti-}}} g(x) = A$ nuous at point A $\Rightarrow \lim_{x \to a \pm} f(g(x)) = f(A)$ Let

$$\lim_{x\to a}f(x)=L.$$

Points $\pm \infty$ are called **improper points**. A point $a \in \mathbb{R}$ is called **proper point**.

I. If $a, L \in \mathbb{R}$ then L is a proper limit at proper point

II. If $a \in \mathbb{R}$, $L = \pm \infty$ then L is a improper limit at proper point

III. If $a = \pm \infty$ $L \in \mathbb{R}$ then L is a proper limit at improper point

IV. If $a = \pm \infty$, $L = \pm \infty$ then L is a improper limit at improper point

Case I. was discussed at previous section. Now we focused on cases II., III. a IV.

Improper Limits II.

Definition: Let f(x) be defined on some $\mathcal{P}(a)$ then (i) $\lim_{x \to a} f(x) = \infty$ if

 $\forall K > 0 \exists \mathcal{P}_{\delta}(a)$ such that $\forall x \in \mathcal{P}_{\delta}(a)$ is f(x) > K,

(ii)
$$\lim_{x\to a} f(x) = -\infty$$
 if

 $\forall L < 0 \exists \mathcal{P}_{\delta}(a) \text{ such that } \forall x \in \mathcal{P}_{\delta}(a) \text{ is } f(x) < L.$

Remark: Using $\mathcal{P}_{\delta}^+(a)$ or $\mathcal{P}_{\delta}^-(a)$ instead of $\mathcal{P}_{\delta}(a)$ we obtain one-hand improper limits at proper point:

(i) $\lim_{x \to a+} f(x) = \infty$ $\lim_{x \to a-} f(x) = \infty$ (ii) $\lim_{x \to a+} f(x) = -\infty$ $\lim_{x \to a-} f(x) = -\infty$

Theorem:

(i)
$$\lim_{x \to a} f(x) = \infty$$
 \Leftrightarrow $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = \infty$
(ii) $\lim_{x \to a} f(x) = -\infty$ \Leftrightarrow $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = -\infty$

Theorem: (i) Let $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = \infty$ then $\lim_{x \to a} f(x) + g(x) = \infty$ $\lim_{x \to a} f(x) \cdot g(x) = \infty$. (ii) Let $\lim_{x \to a} f(x) = -\infty$ and $\lim_{x \to a} g(x) = -\infty$ then $\lim_{x \to a} f(x) + g(x) = -\infty$ $\lim_{x \to a} f(x) \cdot g(x) = \infty$.

(iii) Let
$$\lim_{x \to a} f(x) = \infty$$
 and $\lim_{x \to a} g(x) = -\infty$ then
 $\lim_{x \to a} f(x) \cdot g(x) = -\infty$

(iv) Let $\lim_{x \to a} f(x) = A \in \mathbb{R}$, A > 0 and $\lim_{x \to a} g(x) = \pm \infty$ then $\lim_{x \to a} f(x) \cdot g(x) = \pm \infty$.

(v) Let $\lim_{x \to a} f(x) = A \in \mathbb{R}$ and $\lim_{x \to a} g(x) = \pm \infty$ then $\lim_{x \to a} \frac{f(x)}{g(x)} = 0.$ **Theorem:** Let function f be bounded on some P(a) then it holds

(i) If $\lim_{x \to a} g(x) = \pm \infty$ then $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$. (ii) If $\lim_{x \to a} g(x) = 0$ then $\lim_{x \to a} f(x)g(x) = 0$.

Theorem: Let $\lim_{x \to a} f(x) = A > 0$ and $\lim_{x \to a} g(x) = 0$ then (i) If g(x) > 0 on $\mathcal{P}(a)$ then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=+\infty\,.$$

(ii) If g(x) < 0 on $\mathcal{P}(a)$ then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=-\infty\,.$$

(iii) If function g(x) takes on each neighbourhood P(a) positive and negative values then

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
 does not exist.

Improper Limits III.

Definition: Consider *f* such that $(x_0, \infty) \subseteq \mathcal{D}(f)$ $((-\infty, x_0) \subseteq \mathcal{D}(f)$, respectively). x_0 can be infinite. We say that *f* has limit L_1 (L_2 , respectively) at improper point ∞ $(-\infty)$ and write

$$\lim_{x\to\infty}f(x)=L_1\ \left(\lim_{x\to-\infty}f(x)=L_2\right)$$

if

 $\forall \mathcal{O}_{\varepsilon}(L_1) \exists x_1 > 0 \text{ such that } \forall x > x_1 \text{ is } f(x) \in \mathcal{O}_{\varepsilon}(L_1)$ $(\forall \mathcal{O}_{\varepsilon}(L_2) \exists x_2 < 0 \text{ such that } \forall x < x_2 \text{ is } f(x) \in \mathcal{O}_{\varepsilon}(L_2))$

Squeeze theorem (Sandwich theorem): Suppose:

■
$$\forall x \in (a, \infty)$$
: $g(x) \le f(x) \le h(x)$
■ $\lim_{x \to \infty} g(x) = \lim_{x \to \infty} h(x)$
then there exists $\lim_{x \to \infty} f(x)$ and is equal to $\lim_{x \to \infty} g(x)$.
Theorem: Let $\lim_{x \to \pm \infty} f(x) = A$ and $\lim_{x \to \pm \infty} g(x) = B$, where
 $A, B \in \mathbb{R}$. Then:
(i) $\lim_{x \to \pm \infty} (f(x) \pm g(x)) = \lim_{x \to \pm \infty} f(x) \pm \lim_{x \to \pm \infty} g(x) = A \pm B$
(ii) $\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = \lim_{x \to \pm \infty} f(x) \cdot \lim_{x \to \pm \infty} g(x) = A \cdot B$

(iii) if
$$B \neq 0$$
 then $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \pm \infty} f(x)}{\lim_{x \to \pm \infty} g(x)} = \frac{A}{B}$

Improper Limits IV.

Definition: Consider *f* such that $(x_0, \infty) \subseteq \mathcal{D}(f)$ $((-\infty, x_0) \subseteq \mathcal{D}(f)$, respectively). x_0 can be infinite.

(i) We say that function *f* has limit $L = \infty$ at improper point ∞ and write $\lim_{x \to \infty} f(x) = \infty$ if

 $\forall K > 0 \exists x_1 > 0 \text{ such that } \forall x > x_1 \text{ is } f(x) > K.$ (ii) We say that function *f* has limit $L = -\infty$ at improper point ∞ and write $\lim_{x \to \infty} f(x) = -\infty$ if

(iii) We say that function *f* has limit $L = \infty$ at improper point $-\infty$ and write $\lim_{x \to -\infty} f(x) = \infty$ if

 $\forall K > 0 \exists x_2 < 0 \text{ such that } \forall x < x_2 \text{ is } f(x) > K.$ (iv) We say that function *f* has limit $L = -\infty$ at improper point $-\infty$ and write $\lim_{x \to -\infty} f(x) = -\infty$ if

 $\forall L < 0 \exists x_2 < 0 \text{ such that } \forall x < x_2 \text{ is } f(x) < L.$

Theorem:

(i) Let
$$\lim_{x \to \pm \infty} f(x) = \infty$$
 and $\lim_{x \to \pm \infty} g(x) = \infty$ then
 $\lim_{x \to \pm \infty} f(x) + g(x) = \infty$ $\lim_{x \to \pm \infty} f(x) \cdot g(x) = \infty$.
(ii) Let $\lim_{x \to \pm \infty} f(x) = -\infty$ and $\lim_{x \to \pm \infty} g(x) = -\infty$ then
 $\lim_{x \to a} f(x) + g(x) = -\infty$ $\lim_{x \to \pm \infty} f(x) \cdot g(x) = \infty$.
(iii) Let $\lim_{x \to \pm \infty} f(x) = \infty$ and $\lim_{x \to \pm \infty} g(x) = -\infty$ then
 $\lim_{x \to a} f(x) \cdot g(x) = -\infty$
(iv) Let $\lim_{x \to \pm \infty} f(x) = A \in \mathbb{R}$, $A > 0$ and $\lim_{x \to \pm \infty} g(x) = \pm \infty$,
 $\lim_{x \to a} f(x) \cdot g(x) = \pm \infty$.
(v) Let $\lim_{x \to \pm \infty} f(x) = A \in \mathbb{R}$ and $\lim_{x \to \pm \infty} g(x) = \pm \infty$ then

 $\lim_{x \to \pm \infty} f(x) = X \in \mathbb{R} \text{ and } \lim_{x \to \pm \infty} g(x) = \pm \infty \text{ then}$ $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = 0.$

Improper Limits IV. (2)

Theorem: Let function *f* be bounded on some (x_0, ∞) or $(-\infty, x_0)$, respectively. Then

(i) if
$$\lim_{x \to \pm \infty} g(x) = \pm \infty$$
 then $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = 0$
(ii) if $\lim_{x \to \pm \infty} g(x) = 0$ then $\lim_{x \to \pm \infty} f(x)g(x) = 0$

Theorem: Let $\lim_{x \to \pm \infty} f(x) = A > 0$ and $\lim_{x \to \pm \infty} g(x) = 0$ then it holds:

(i) if g(x) > 0 on (a, ∞) or $(-\infty, a)$ then

$$\lim_{x\to\pm\infty}\frac{f(x)}{g(x)}=+\infty$$

(ii) if g(x) < 0 on (a, ∞) or $(-\infty, a)$ then

$$\lim_{x\to\pm\infty}\frac{f(x)}{g(x)}=-\infty$$

Limit of a sequence

Definition: For all $n \in \mathbb{N}$ define $a_n \in \mathbb{R}$. We say that

 a_1, a_2, a_3, \dots

create a sequence of real numbers. Number a_n is called n-th term, n is index of number a_n . A sequence is briefly denoted $\{a_n\}_{n=1}^{\infty}$.

Remark: A sequence is a function defined on a subset of natural numbers \mathbb{N} (or more generally integer numbers \mathbb{Z}):

$$a_n = f(n), \quad f: \mathbb{N} \to \mathbb{R}.$$

Arithmetic sequence:

$$a_n=a_1+(n-1)d,$$

where $d \in \mathbb{R}$ is a common difference. **Geometric sequence:**

$$a_n = a_1 \cdot q^n$$

where $q \in \mathbb{R}$ is a common ratio (or quotient).

Definition: We say that a sequence $\{a_n\}_{n=1}^{\infty}$ has a limit $A \in \mathbb{R}$ if

 $\forall \mathcal{O}_{\varepsilon}(A) \exists n_0 \in \mathbb{N} \text{ such that } \forall n > n_0 \text{ is } a_n \in \mathcal{O}_{\varepsilon}(A).$

• $A = \pm \infty$ if

 $\forall K > 0 \exists n_0 \in \mathbb{N} \text{ such that } \forall n \ge n_0 \text{ is } a_n > K$,

 $\forall L < 0 \exists n_0 \in \mathbb{N} \text{ such that } \forall n \ge n_0 \text{ is } a_n < L.$

A sequence $\{a_n\}_{n=1}^{\infty}$ is called convergent, if it has a proper limit $A \in \mathbb{R}$.

A sequence $\{a_n\}_{n=1}^{\infty}$ is called divergent otherwise ($A = \pm \infty$ or does not exist).

Limit of a sequence (3)

Definition: Consider a sequence $\{a_n\}_{n=1}^{\infty}$ (i) If $\forall n \in \mathbb{N}$ is

$$a_n < a_{n+1}$$
 (resp. $a_n \le a_{n+1}$)

we say that a sequence is increasing (non-decreasing, resp.).

(ii) If
$$\forall n \in \mathbb{N}$$
 is

$$a_n > a_{n+1}$$
 (resp. $a_n \ge a_{n+1}$)

we say that a sequence is decreasing (non-increasing, resp.).

Theorem:

- A decreasing or non-increasing sequence is bounded above.
- A increasing or non-decreasing sequence is bounded below.

Corollary: A monotone sequence has always limit. If it is bounded then the limit is proper.

One can prove that there exists a limit of the sequence

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$$

Definition: Denote

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

Number e is called Euler's number. This number is irrational.