Chapter 2: Continuity and limit of the function

Neighbourhood of a point

Notation: $\forall a \in \mathbb{R} \forall \varepsilon>0$ we denote
$\square \mathcal{O}_{\varepsilon}(a)=(a-\varepsilon, a+\varepsilon) \varepsilon$-neighbourhood of a point a $\mathcal{O}_{\varepsilon}^{+}(a)=[a, a+\varepsilon)$ right ε-neighbourhood $\mathcal{O}_{\varepsilon}^{-}(a)=(a-\varepsilon, a]$ left ε-neighbourhood
$■ \mathcal{P}_{\varepsilon}(a)=\mathcal{O}_{\varepsilon}(a) \backslash\{a\}$ punctured ε-neighbourhood of a point a $\mathcal{P}_{\varepsilon}^{+}(a)=(a, a+\varepsilon)$ punctured right ε-neighbourhood
$\mathcal{P}_{\varepsilon}^{-}(a)=(a-\varepsilon, a)$ punctured left ε-neighbourhood
■ $x \rightarrow a \quad x$ "tends to"a
x takes values arbitrarily close to a
$x \rightarrow a+, x \rightarrow a-, x \rightarrow+\infty, x \rightarrow-\infty$

Continuity of a function (1)

Definition: Consider a function f defined in a neighbourhood of a. We say that f is continuous at point $a \in D(f)$ if

$$
\forall \mathcal{O}_{\varepsilon}(f(a)) \exists \mathcal{O}_{\delta}(a): \quad f\left(\mathcal{O}_{\delta}(a)\right) \subseteq \mathcal{O}_{\varepsilon}(f(a))
$$

Equivalently:

$$
\forall \varepsilon>0 \exists \delta>0: \quad|x-a|<\delta \Rightarrow|f(x)-f(a)|<\varepsilon
$$

Definition: We say that f is continuous on an open interval (a, b) if it is continuous at each point of (a, b).

Continuity of a function (2)

Definition: We say that a function f is continuous from the right (right-hand side continuous) /continuous from the left (left-hand side continuous) at point $\boldsymbol{a} \in D(f)$ if

$$
\begin{aligned}
\forall \mathcal{O}_{\varepsilon}(f(a)) \exists \mathcal{O}_{\delta}^{+}(a): & f\left(\mathcal{O}_{\delta}^{+}(a)\right) \subseteq \mathcal{O}_{\varepsilon}(f(a)) \\
\forall \mathcal{O}_{\varepsilon}(f(a)) \exists \mathcal{O}_{\delta}^{-}(a): & f\left(\mathcal{O}_{\delta}^{-}(a)\right) \subseteq \mathcal{O}_{\varepsilon}(f(a))
\end{aligned}
$$

Definition: We say that a function f is continuous on a closed interval $[a, b]$ if it is

- continuous at each point of (a, b),
- continuous from the right at point a,
- continuous from the left at point b.

Continuity of a function (3)

Theorem: Let f and g be functions continuous at point a. Then functions $|f|, f \pm g, f \cdot g$ are continuous at point a. Furthermore if $g(a) \neq 0$ then $\frac{f}{g}$ is continuous at point a.

Theorem: If

- function $y=f(x)$ is continuous at point $x=a$,

■ function $z=g(y)$ is continuous at point $y=f(a)$,
then a composition $h(x)=g(f(x))$ is continuous at point $x=a$.

Definition: Let $f: D(f) \rightarrow \mathbb{R}$ be defined in some neighbourhood $\mathcal{P}(a) \subseteq D(f)$. We say that function f has limit $A \in \mathbb{R}$ at point a (denote $\lim _{x \rightarrow a} f(x)=A$) if

$$
\forall \mathcal{O}_{\varepsilon}(A) \exists \mathcal{P}_{\delta}(a): \quad f\left(\mathcal{P}_{\delta}(a)\right) \subset \mathcal{O}_{\varepsilon}(A)
$$

or equivalently

$$
\forall \varepsilon>0 \exists \delta>0: \quad 0<|x-a|<\delta \Rightarrow|f(x)-A|<\varepsilon
$$

Theorem: Function f has at most one limit at point a.
Remark: We are interested in small ε (i.e. close to zero).

Calculation of the limits (1)

Theorem: Function f is continuous at point a if and only if $\lim _{x \rightarrow a} f(x)=f(a)$.

Theorem: Let $f: D(f) \rightarrow \mathbb{R}, g: D(g) \rightarrow \mathbb{R}, a \in \mathbb{R}$.

$$
\exists \mathcal{P}(a): \quad(\forall x \in \mathcal{P}(a): f(x)=g(x)) \Rightarrow \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)
$$

Squeeze theorem (Sandwich theorem):

Let the following two conditions hold:

- $\forall x \in \mathcal{P}(a): g(x) \leq f(x) \leq h(x)$
- $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)$
then there exists $\lim _{x \rightarrow a} f(x)$ and is equal to $\lim _{x \rightarrow a} g(x)$.

Calculation of the limits (2)

Theorem: Let $\lim _{x \rightarrow a} f(x)=A$ and $\lim _{x \rightarrow a} g(x)=B$, where $A, B \in \mathbb{R}$. It holds:
(i) $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)=A \pm B$
(ii) $\lim _{x \rightarrow a}(f(x) \operatorname{cdotg}(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=A \cdot B$
(iii) if $B \neq 0$ then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\left(\lim _{x \rightarrow a} f(x)\right) /\left(\lim _{x \rightarrow a} g(x)\right)=\frac{A}{B}$

Theorem (composition of functions): Let $\lim _{x \rightarrow a} g(x)=A$ and let the function f be continuous at point A. Then

$$
\lim _{x \rightarrow a} f(g(x))=f(A)
$$

Remark:

$$
\lim _{x \rightarrow a}[f(x)]^{g(x)}=\lim _{x \rightarrow a} \mathrm{e}^{g(x) \ln f(x)}
$$

One sided limits

Definition: Let function $f: D(f) \rightarrow \mathbb{R}$ be defined on some $\mathcal{P}^{+}(a) \subseteq D(f)$. We say that f has right-hand limit $A \in \mathbb{R}$ at point a (symbolically $\lim _{x \rightarrow a+} f(x)=A$) if

$$
\forall \mathcal{O}_{\varepsilon}(A) \exists \mathcal{P}_{\delta}^{+}(a): \quad f\left(\mathcal{P}_{\delta}^{+}(a)\right) \subset \mathcal{O}_{\varepsilon}(A)
$$

Definition: Let function $f: D(f) \rightarrow \mathbb{R}$ be defined on some $\mathcal{P}^{-}(a) \subseteq D(f)$. We say that f has left-hand limit $A \in \mathbb{R}$ at point a (symbolically $\lim _{x \rightarrow a-} f(x)=A$) if

$$
\forall \mathcal{O}_{\varepsilon}(A) \exists \mathcal{P}_{\delta}^{-}(a): \quad f\left(\mathcal{P}_{\delta}^{-}(a)\right) \subset \mathcal{O}_{\varepsilon}(A)
$$

Theorem: $\lim _{x \rightarrow a} f(x)$ exists if and only if $\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a_{-}} f(x)$.
Then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)
$$

Theorems for limits hold also for one-sided limits:

(i) f has at point a at most one left- and right-hand limit
(ii) f is left-hand (right-hand) side continuous at point a if and only if $\lim _{x \rightarrow a \pm} f(x)=f(a)$
(iii) $f(x)=g(x)$ for $x \in \mathcal{P}^{ \pm}(a) \Rightarrow \lim _{x \rightarrow a \pm} f(x)=\lim _{x \rightarrow a \pm} g(x)$
(iv) The squeeze theorem:
$\forall x \in \mathcal{P}^{ \pm}(a): g(x) \leq f(x) \leq h(x) \quad \Rightarrow \lim _{x \rightarrow a \pm} f(x)=\lim _{x \rightarrow a \pm} g(x)$
$\quad \lim g(x)=\lim h(x)$ $\lim _{x \rightarrow a \pm} g(x)=\lim _{x \rightarrow a \pm} h(x)$
(v) $\lim _{x \rightarrow a \pm}(f(x) \pm g(x))=\lim _{x \rightarrow a \pm} f(x) \dot{ \pm} \lim _{x \rightarrow a \pm} g(x)$
(vi) $\lim _{x \rightarrow a \pm} \frac{f(x)}{g(x)}=\left(\lim _{x \rightarrow a \pm} f(x)\right) /\left(\lim _{x \rightarrow a \pm} g(x)\right)$ if $\lim _{x \rightarrow a \pm} g(x) \neq 0$
$\lim _{x \rightarrow a \pm} g(x)=A$
(vii) $\begin{aligned} & x \rightarrow a \pm \\ & \text { if } f \text { is right-(left-)hand side conti- }\end{aligned} \Rightarrow \lim _{x \rightarrow a \pm} f(g(x))=f(A)$ nuous at point A

Let

$$
\lim _{x \rightarrow a} f(x)=L
$$

Points $\pm \infty$ are called improper points. A point $a \in \mathbb{R}$ is called proper point.
I. If $a, L \in \mathbb{R}$ then L is a proper limit at proper point
II. If $a \in \mathbb{R}, L= \pm \infty$ then L is a improper limit at proper point
III. If $a= \pm \infty L \in \mathbb{R}$ then L is a proper limit at improper point
IV. If $a= \pm \infty, L= \pm \infty$ then L is a improper limit at improper point

Case I. was discussed at previous section. Now we focused on cases II., III. a IV.

Definition: Let $f(x)$ be defined on some $\mathcal{P}(a)$ then
(i) $\lim _{x \rightarrow a} f(x)=\infty$ if

$$
\forall K>0 \exists \mathcal{P}_{\delta}(a) \text { such that } \forall x \in \mathcal{P}_{\delta}(a) \text { is } f(x)>K
$$

(ii) $\lim _{x \rightarrow a} f(x)=-\infty$ if

$$
\forall L<0 \exists \mathcal{P}_{\delta}(a) \text { such that } \forall x \in \mathcal{P}_{\delta}(a) \text { is } f(x)<L
$$

Remark: Using $\mathcal{P}_{\delta}^{+}(a)$ or $\mathcal{P}_{\delta}^{-}(a)$ instead of $\mathcal{P}_{\delta}(a)$ we obtain one-hand improper limits at proper point:
(i) $\lim _{x \rightarrow a+} f(x)=\infty \quad \lim _{x \rightarrow a-} f(x)=\infty$
(ii) $\lim _{x \rightarrow a+} f(x)=-\infty \quad \lim _{x \rightarrow a-} f(x)=-\infty$

Theorem:

(i) $\lim _{x \rightarrow a} f(x)=\infty \quad \Leftrightarrow \quad \lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)=\infty$
(ii) $\lim _{x \rightarrow a} f(x)=-\infty \quad \Leftrightarrow \quad \lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)=-\infty$

Theorem:

(i) Let $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$ then

$$
\lim _{x \rightarrow a} f(x)+g(x)=\infty \quad \lim _{x \rightarrow a} f(x) \cdot g(x)=\infty
$$

(ii) Let $\lim _{x \rightarrow a} f(x)=-\infty$ and $\lim _{x \rightarrow a} g(x)=-\infty$ then

$$
\lim _{x \rightarrow a} f(x)+g(x)=-\infty \quad \lim _{x \rightarrow a} f(x) \cdot g(x)=\infty
$$

(iii) Let $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=-\infty$ then

$$
\lim _{x \rightarrow a} f(x) \cdot g(x)=-\infty
$$

(iv) Let $\lim _{x \rightarrow a} f(x)=A \in \mathbb{R}, A>0$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$ then

$$
\lim _{x \rightarrow a} f(x) \cdot g(x)= \pm \infty
$$

(v) Let $\lim _{x \rightarrow a} f(x)=A \in \mathbb{R}$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=0
$$

Theorem: Let function f be bounded on some $P(a)$ then it holds
(i) If $\lim _{x \rightarrow a} g(x)= \pm \infty$ then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=0$.
(ii) If $\lim _{x \rightarrow a} g(x)=0$ then $\lim _{x \rightarrow a} f(x) g(x)=0$.

Theorem: Let $\lim _{x \rightarrow a} f(x)=A>0$ and $\lim _{x \rightarrow a} g(x)=0$ then
(i) If $g(x)>0$ on $\mathcal{P}(a)$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=+\infty
$$

(ii) If $g(x)<0$ on $\mathcal{P}(a)$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=-\infty
$$

(iii) If function $g(x)$ takes on each neighbourhood $P(a)$ positive and negative values then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)} \text { does not exist. }
$$

Definition: Consider f such that $\left(x_{0}, \infty\right) \subseteq \mathcal{D}(f)$
$\left(\left(-\infty, x_{0}\right) \subseteq \mathcal{D}(f)\right.$, respectively). x_{0} can be infinite.
We say that f has limit L_{1} (L_{2}, respectively) at improper point ∞ $(-\infty)$ and write

$$
\lim _{x \rightarrow \infty} f(x)=L_{1} \quad\left(\lim _{x \rightarrow-\infty} f(x)=L_{2}\right)
$$

if

$$
\begin{aligned}
& \forall \mathcal{O}_{\varepsilon}\left(L_{1}\right) \exists x_{1}>0 \text { such that } \forall x>x_{1} \text { is } f(x) \in \mathcal{O}_{\varepsilon}\left(L_{1}\right) \\
& \left(\forall \mathcal{O}_{\varepsilon}\left(L_{2}\right) \exists x_{2}<0 \text { such that } \forall x<x_{2} \text { is } f(x) \in \mathcal{O}_{\varepsilon}\left(L_{2}\right)\right)
\end{aligned}
$$

Improper Limits III. (2)

Squeeze theorem (Sandwich theorem):

Suppose:
$\square \forall x \in(a, \infty): g(x) \leq f(x) \leq h(x)$

- $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} h(x)$
then there exists $\lim _{x \rightarrow \infty} f(x)$ and is equal to $\lim _{x \rightarrow \infty} g(x)$.
Theorem: Let $\lim _{x \rightarrow \pm \infty} f(x)=A$ and $\lim _{x \rightarrow \pm \infty} g(x)=B$, where $A, B \in \mathbb{R}$. Then:
(i) $\lim _{x \rightarrow \pm \infty}(f(x) \pm g(x))=\lim _{x \rightarrow \pm \infty} f(x) \pm \lim _{x \rightarrow \pm \infty} g(x)=A \pm B$
(ii) $\lim _{x \rightarrow \pm \infty}(f(x) \cdot g(x))=\lim _{x \rightarrow \pm \infty} f(x) \cdot \lim _{x \rightarrow \pm \infty} g(x)=A \cdot B$
(iii) if $B \neq 0$ then $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow \pm \infty} f(x)}{\lim _{x \rightarrow \pm \infty} g(x)}=\frac{A}{B}$

Definition: Consider f such that $\left(x_{0}, \infty\right) \subseteq \mathcal{D}(f)$
$\left(\left(-\infty, x_{0}\right) \subseteq \mathcal{D}(f)\right.$, respectively). x_{0} can be infinite.
(i) We say that function f has limit $L=\infty$ at improper point ∞ and write $\lim _{x \rightarrow \infty} f(x)=\infty$ if

$$
\forall K>0 \exists x_{1}>0 \text { such that } \forall x>x_{1} \text { is } f(x)>K
$$

(ii) We say that function f has limit $L=-\infty$ at improper point ∞ and write $\lim _{x \rightarrow \infty} f(x)=-\infty$ if

$$
\forall L<0 \exists x_{1}>0 \text { such that } \forall x>x_{1} \text { is } f(x)<L
$$

(iii) We say that function f has limit $L=\infty$ at improper point $-\infty$ and write $\lim _{x \rightarrow-\infty} f(x)=\infty$ if

$$
\forall K>0 \exists x_{2}<0 \text { such that } \forall x<x_{2} \text { is } f(x)>K
$$

(iv) We say that function f has limit $L=-\infty$ at improper point $-\infty$ and write $\lim _{x \rightarrow-\infty} f(x)=-\infty$ if

$$
\forall L<0 \exists x_{2}<0 \text { such that } \forall x<x_{2} \text { is } f(x)<L
$$

Theorem:

(i) Let $\lim _{x \rightarrow \pm \infty} f(x)=\infty$ and $\lim _{x \rightarrow \pm \infty} g(x)=\infty$ then

$$
\lim _{x \rightarrow \pm \infty} f(x)+g(x)=\infty \quad \lim _{x \rightarrow \pm \infty} f(x) \cdot g(x)=\infty
$$

(ii) Let $\lim _{x \rightarrow \pm \infty} f(x)=-\infty$ and $\lim _{x \rightarrow \pm \infty} g(x)=-\infty$ then

$$
\lim _{x \rightarrow a} f(x)+g(x)=-\infty \quad \lim _{x \rightarrow \pm \infty} f(x) \cdot g(x)=\infty
$$

(iii) Let $\lim _{x \rightarrow \pm \infty} f(x)=\infty$ and $\lim _{x \rightarrow \pm \infty} g(x)=-\infty$ then

$$
\lim _{x \rightarrow a} f(x) \cdot g(x)=-\infty
$$

(iv) Let $\lim _{x \rightarrow \pm \infty} f(x)=A \in \mathbb{R}, A>0$ and $\lim _{x \rightarrow \pm \infty} g(x)= \pm \infty$,

$$
\lim _{x \rightarrow a} f(x) \cdot g(x)= \pm \infty
$$

(v) Let $\lim _{x \rightarrow \pm \infty} f(x)=A \in \mathbb{R}$ and $\lim _{x \rightarrow \pm \infty} g(x)= \pm \infty$ then

$$
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=0
$$

Improper Limits IV. (2)

Theorem: Let function f be bounded on some $\left(x_{0}, \infty\right)$ or $\left(-\infty, x_{0}\right)$, respectively. Then
(i) if $\lim _{x \rightarrow \pm \infty} g(x)= \pm \infty$ then $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=0$
(ii) if $\lim _{x \rightarrow \pm \infty} g(x)=0$ then $\lim _{x \rightarrow \pm \infty} f(x) g(x)=0$

Theorem: Let $\lim _{x \rightarrow \pm \infty} f(x)=A>0$ and $\lim _{x \rightarrow \pm \infty} g(x)=0$ then it holds:
(i) if $g(x)>0$ on (a, ∞) or $(-\infty, a)$ then

$$
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=+\infty
$$

(ii) if $g(x)<0$ on (a, ∞) or $(-\infty, a)$ then

$$
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=-\infty
$$

Limit of a sequence

Definition: For all $n \in \mathbb{N}$ define $a_{n} \in \mathbb{R}$. We say that

$$
a_{1}, a_{2}, a_{3}, \ldots
$$

create a sequence of real numbers. Number a_{n} is called $n-$ th term, n is index of number a_{n}. A sequence is briefly denoted $\left\{a_{n}\right\}_{n=1}^{\infty}$.
Remark: A sequence is a function defined on a subset of natural numbers \mathbb{N} (or more generally integer numbers \mathbb{Z}):

$$
a_{n}=f(n), \quad f: \mathbb{N} \rightarrow \mathbb{R}
$$

Arithmetic sequence:

$$
a_{n}=a_{1}+(n-1) d
$$

where $d \in \mathbb{R}$ is a common difference.
Geometric sequence:

$$
a_{n}=a_{1} \cdot q^{n}
$$

where $q \in \mathbb{R}$ is a common ratio (or quotient).

Definition: We say that a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ has a limit
■ $A \in \mathbb{R}$ if

$$
\forall \mathcal{O}_{\varepsilon}(A) \exists n_{0} \in \mathbb{N} \text { such that } \forall n>n_{0} \text { is } a_{n} \in \mathcal{O}_{\varepsilon}(A)
$$

■ $A= \pm \infty$ if

$$
\begin{aligned}
& \forall K>0 \exists n_{0} \in \mathbb{N} \text { such that } \forall n \geq n_{0} \text { is } a_{n}>K, \\
& \forall L<0 \exists n_{0} \in \mathbb{N} \text { such that } \forall n \geq n_{0} \text { is } a_{n}<L
\end{aligned}
$$

A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is called convergent, if it has a proper limit $A \in \mathbb{R}$.
A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is called divergent otherwise ($A= \pm \infty$ or does not exist).

Limit of a sequence (3)

Definition: Consider a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$
(i) If $\forall n \in \mathbb{N}$ is

$$
a_{n}<a_{n+1} \quad\left(\text { resp. } a_{n} \leq a_{n+1}\right)
$$

we say that a sequence is increasing (non-decreasing, resp.).
(ii) If $\forall n \in \mathbb{N}$ is

$$
a_{n}>a_{n+1} \quad\left(\text { resp. } a_{n} \geq a_{n+1}\right)
$$

we say that a sequence is decreasing (non-increasing, resp.).
Theorem:
\square A decreasing or non-increasing sequence is bounded above.

- A increasing or non-decreasing sequence is bounded below.

Corollary: A monotone sequence has always limit. If it is bounded then the limit is proper.

Euler's number

One can prove that there exists a limit of the sequence

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Definition: Denote

$$
\mathrm{e}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Number e is called Euler's number. This number is irrational.

