Chapter 1: Real functions of one real variable

Number sets

$\mathbb{N}, \mathbb{N}_{0}, \mathbb{Z}, \mathbb{Q}, \mathbb{I}, \mathbb{R}, \mathbb{C}$
Definition: A Cartesian product $M \times N$ of sets M and N is a coordinate system of ordered pairs (m, n) where $m \in M$ and $n \in N$.

$$
M \times N=\{(m, n) \mid m \in M \wedge n \in N\}
$$

Definition: Let $\emptyset \neq M \subset \mathbb{R}$. We say that M is bounded above (bounded below), if there is a number $a \in \mathbb{R}$ such that for all $m \in M$ is $m \leq(\geq)$ a. The number a is called upper (lower) bound of set M.
The set M is bounded, if it is simultaneously bounded below and above.

Definition: Let $\emptyset \neq M \subset \mathbb{R}$. We say that $\max M(\min M)$ is maximum (minimum) of set M, if:
(i) $\forall m \in M: m \leq \max M(\geq \min M)$
(ii) $\max M(\min M) \in M$

Definition: Let $M \subset \mathbb{R}$. A function f of a real variable is a rule which assigns to each $x \in M$ exactly one $y \in \mathbb{R}$.

Variable x is called argument or independent variable and variable y is called dependent.
The set M is called the domain of function f and denoted by $D(f)$. A set $\{y=f(x) \mid x \in D(f)\}$ is called the range of f and is denoted by $H(f)$.
\square Notation: $y=f(x), f: M \rightarrow \mathbb{R}, x \mapsto f(x), x \mapsto y$
■ General term: mapping

Definition Graph of function f is a set of ordered pairs of real numbers $(x, f(x))$, where $x \in D(f)$. We write

$$
\text { graph } f=\{(x, f(x)) \mid x \in D(f)\}
$$

Remark:

1. The domain is a part of definition of the function. If it is not given we consider the natural domain, that is the largest possible domain.
2. Two functions f and g are equal $(f=g)$, if
(i) $D(f)=D(g)$
(ii) $\forall x \in D(f): f(x)=g(x)$

Composition of functions

Definition: Let f and g be real functions with domains $D(f)$ and $D(g)$.

- Let $H(f) \subseteq D(g)$. Then under the composition of function f and g we understand function h defined by

$$
\forall x \in D(h): h(x)=g(f(x))
$$

with $D(h)=D(f)$.
Notation: $h=g \circ f$.
■ If $H(f) \nsubseteq D(g)$, then by the domain of function $h=g \circ f$ we understand set

$$
D(h)=\{x \in D(f) \mid f(x) \in D(g)\}
$$

Remark: In general $g \circ f \neq f \circ g$.

Definition: Function $f: D(f) \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is injective (one to one) on $M \subseteq D(f)$ if

$$
\forall x_{1}, x_{2} \in M: x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Remark:
\square equivalently \rightarrow proof that f is injective

$$
\forall x_{1}, x_{2} \in M: f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}
$$

■ negation \rightarrow proof that f is not injective

$$
\exists x_{1}, x_{2} \in M: x_{1} \neq x_{2} \wedge f\left(x_{1}\right)=f\left(x_{2}\right)
$$

Definition: Consider $f: D(f) \subseteq \mathbb{R} \rightarrow \mathbb{R}$ and set $M \subseteq D(f)$. If for all $x_{1}, x_{2} \in M, x_{1}<x_{2}$ it holds
(i) $f\left(x_{1}\right)<f\left(x_{2}\right)$ is f increasing na M
(ii) $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ is f non-decreasing na M
(iii) $f\left(x_{1}\right)>f\left(x_{2}\right)$ is f decreasing na M
(iv) $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ is f non-increasing na M

If f satisfies any of condition (i) - (iv) we call it monotone. If f has property (i) or (iii), we call it strictly monotone.

Proposition: A sum of two increasing (decreasing) functions is an increasing (decreasing) function.

Theorem: Let f be strictly monotone on set $M \subseteq \mathbb{R}$ then f is injective on M.

Definition:

- We say that function f is bounded below on its domain $D(f)$ if

$$
\exists d \in \mathbb{R} \forall x \in D(f): d \leq f(x)
$$

- We say that function f is bounded above on its domain $D(f)$ if

$$
\exists h \in \mathbb{R} \forall x \in D(f): f(x) \leq h
$$

■ Function is bounded if it is bounded below and above.

Special classes of functions - even and odd functions

Definition:

■ We say that function $f: D(f) \rightarrow \mathbb{R}$ is even if

$$
\forall x \in D(f): f(-x)=f(x)
$$

- We say that function $f: D(f) \rightarrow \mathbb{R}$ is odd if

$$
\forall x \in D(f): f(-x)=-f(x)
$$

Remark:
(i) Graph of an even function is symmetric with, respect to the y axis.
(ii) Graph of an odd function is symmetric with, respect to the origin.
(ii) Domain of an even or odd function is always symmetric with respect to the origin!

Definition: A function $f: D(f) \rightarrow \mathbb{R}$ is called periodic if $\exists p \in \mathbb{R}$, $p \neq 0$ such that:
(i) $x \in D(f) \Rightarrow x \pm p \in D(f)$
(ii) $\forall x \in D(f): f(x \pm p)=f(x)$

Number p is called a period of f. The smallest positive period is called primitive.

Theorem:

(i) If f is periodic with period p and function g such that $H(f) \subseteq D(g)$ then a composition $h(x)=g(f(x))$ is periodic with the same period p.
(ii) If f is periodic with period p and $a \in \mathbb{R}, a \neq 0$, then function $g(x)=f(a x)$ is periodic with period $\frac{p}{a}$.

Inverse functions

Definition: Let $f: D(f) \rightarrow \mathbb{R}$ be an injective function with range $H(f)$. Inverse function of f (denoted f^{-1}) is defined by the relation

$$
y=f(x) \Leftrightarrow x=f^{-1}(y)
$$

Obviously the domain $D\left(f^{-1}\right)=H(f)$ and range $H\left(f^{-1}\right)=D(f)$ Remarks:
(i) Graph of f^{-1} is symmetric to the graph of f with respect to a line $y=x$.
(ii) $\forall x \in D(f): f^{-1}(f(x))=x$
(iii) $\forall y \in D\left(f^{-1}\right)=H(f): f\left(f^{-1}(y)\right)=y$
(iv) $\left(f^{-1}\right)^{-1}=f$

Exponential and logarithmic function

$$
y=a^{x} \Leftrightarrow x=\log _{a}(y), x \in \mathbb{R}, y>0,1 \neq a>0
$$

Useful: $h(x)=f(x)^{g(x)}=e^{g(x) \ln (f(x))}$

Trigonometric functions

Theorem:
Properties of functions $\arcsin (x), \arccos (x), \operatorname{arctg}(x)$, $\operatorname{arccotg}(x)$

$f(x)$	$\arcsin (x)$	$\arccos (x)$	$\operatorname{arctg}(x)$	$\operatorname{arccotg}(x)$
$D(f)$	$[-1,1]$	$[-1,1]$	\mathbb{R}	\mathbb{R}
$H(f)$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	$(0, \pi)$
increasing	\checkmark	-	\checkmark	-
decreasing	-	\checkmark	-	\checkmark
even	-	-	-	-
odd	\checkmark	-	\checkmark	-
$f^{-1}(x)$	$\sin (x)$	$\cos (x)$	$\operatorname{tg}(x)$	$\operatorname{cotg}(x)$
	$x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$x \in[0, \pi]$	$x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	$x \in(0, \pi)$

Theorem: $\arcsin (x)+\arccos (x)=\frac{\pi}{2}$ for $x \in[-1,1]$ $\operatorname{arctg}(x)+\operatorname{arccotg}(x)=\frac{\pi}{2}$ for $x \in \mathbb{R}$

