Chapter 1: Real functions of one real variable

 \mathbb{N} , \mathbb{N}_0 , \mathbb{Z} , \mathbb{Q} , \mathbb{I} , \mathbb{R} , \mathbb{C}

Definition: A Cartesian product $M \times N$ of sets M and N is a coordinate system of ordered pairs (m, n) where $m \in M$ and $n \in N$.

$$M \times N = \{(m, n) | m \in M \land n \in N\}$$

Definition: Let $\emptyset \neq M \subset \mathbb{R}$. We say that *M* is *bounded above (bounded below)*, if there is a number $a \in \mathbb{R}$ such that for all $m \in M$ is $m \leq (\geq) a$. The number *a* is called *upper (lower) bound* of set *M*.

The set *M* is *bounded*, if it is simultaneously bounded below and above.

Definition: Let $\emptyset \neq M \subset \mathbb{R}$. We say that max *M* (min *M*) is *maximum* (minimum) of set *M*, if:

- (i) $\forall m \in M : m \leq \max M \ (\geq \min M)$
- (ii) $\max M (\min M) \in M$

Definition: Let $M \subset \mathbb{R}$. A function *f* of a real variable is a rule which assigns to each $x \in M$ exactly one $y \in \mathbb{R}$.

Variable *x* is called *argument* or *independent variable* and variable *y* is called *dependent*.

The set *M* is called *the domain* of function *f* and denoted by D(f). A set $\{y = f(x) | x \in D(f)\}$ is called *the range* of *f* and is denoted by H(f).

- Notation: $y = f(x), f : M \to \mathbb{R}, x \mapsto f(x), x \mapsto y$
- General term: mapping

Definition *Graph of function* f is a set of ordered pairs of real numbers (x, f(x)), where $x \in D(f)$. We write

```
graph f = \{(x, f(x)) | x \in D(f)\}
```

Remark:

1. The domain is a part of definition of the function. If it is not given we consider the *natural domain*, that is the largest possible domain.

2. Two functions f and g are equal (f = g), if

(i)
$$D(f) = D(g)$$

(ii) $\forall x \in D(f) : f(x) = g(x)$

Composition of functions

Definition: Let *f* and *g* be real functions with domains D(f) and D(g).

Let H(f) ⊆ D(g). Then under the composition of function f and g we understand function h defined by

$$\forall x \in D(h) : h(x) = g(f(x))$$

with D(h) = D(f). Notation: $h = g \circ f$.

■ If $H(f) \nsubseteq D(g)$, then by the domain of function $h = g \circ f$ we understand set

$$D(h) = \{x \in D(f) | f(x) \in D(g)\}$$

Remark: In general $g \circ f \neq f \circ g$.

Special classes of functions - injective functions

Definition: Function $f : D(f) \subseteq \mathbb{R} \to \mathbb{R}$ is *injective (one to one)* on $M \subseteq D(f)$ if

$$\forall x_1, x_2 \in M : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Remark:

• equivalently \rightarrow proof that *f* is injective

$$\forall x_1, x_2 \in M : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

• negation \rightarrow proof that *f* is not injective

$$\exists x_1, x_2 \in M : x_1 \neq x_2 \land f(x_1) = f(x_2)$$

Definition: Consider $f : D(f) \subseteq \mathbb{R} \to \mathbb{R}$ and set $M \subseteq D(f)$. If for all $x_1, x_2 \in M$, $x_1 < x_2$ it holds

- (i) $f(x_1) < f(x_2)$ is f increasing na M
- (ii) $f(x_1) \le f(x_2)$ is f non-decreasing na M
- (iii) $f(x_1) > f(x_2)$ is f decreasing na M
- (iv) $f(x_1) \ge f(x_2)$ is f non-increasing na M

If *f* satisfies any of condition (i) - (iv) we call it *monotone*. If *f* has property (i) or (iii), we call it *strictly monotone*.

Proposition: A sum of two increasing (decreasing) functions is an increasing (decreasing) function.

Theorem: Let *f* be strictly monotone on set $M \subseteq \mathbb{R}$ then *f* is injective on *M*.

Definition:

We say that function f is bounded below on its domain D(f) if

 $\exists d \in \mathbb{R} \ \forall x \in D(f): \ d \leq f(x)$

We say that function f is bounded above on its domain D(f) if

 $\exists h \in \mathbb{R} \ \forall x \in D(f) : f(x) \leq h$

Function is *bounded* if it is bounded below and above.

Special classes of functions - even and odd functions

Definition:

• We say that function $f : D(f) \to \mathbb{R}$ is *even* if

$$\forall x \in D(f): f(-x) = f(x)$$

• We say that function $f : D(f) \to \mathbb{R}$ is *odd* if

$$\forall x \in D(f): f(-x) = -f(x)$$

Remark:

- (i) Graph of an even function is symmetric with, respect to the *y* axis.
- (ii) Graph of an odd function is symmetric with, respect to the origin.
- (ii) Domain of an even or odd function is always symmetric with respect to the origin!

Definition: A function $f : D(f) \to \mathbb{R}$ is called *periodic* if $\exists p \in \mathbb{R}$, $p \neq 0$ such that:

(i)
$$x \in D(f) \Rightarrow x \pm p \in D(f)$$

(ii)
$$\forall x \in D(f): f(x \pm p) = f(x)$$

Number *p* is called a *period* of *f*. The smallest positive period is called *primitive*.

Theorem:

- (i) If *f* is periodic with period *p* and function *g* such that *H*(*f*) ⊆ *D*(*g*) then a composition *h*(*x*) = *g*(*f*(*x*)) is periodic with the same period *p*.
- (ii) If *f* is periodic with period *p* and $a \in \mathbb{R}$, $a \neq 0$, then function g(x) = f(ax) is periodic with period $\frac{p}{a}$.

Inverse functions

L

Definition: Let $f : D(f) \to \mathbb{R}$ be an injective function with range H(f). *Inverse function* of f (denoted f^{-1}) is defined by the relation

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

Obviously the domain $D(f^{-1}) = H(f)$ and range $H(f^{-1}) = D(f)$ **Remarks:**

(i) Graph of *f*⁻¹ is symmetric to the graph of *f* with respect to a line *y* = *x*.
(ii) ∀*x* ∈ *D*(*f*) : *f*⁻¹(*f*(*x*)) = *x*(iii) ∀*y* ∈ *D*(*f*⁻¹) = *H*(*f*) : *f*(*f*⁻¹(*y*)) = *y*(iv) (*f*⁻¹)⁻¹ = *f*

Exponential and logarithmic function

$$y = a^x \Leftrightarrow x = \log_a(y), x \in \mathbb{R}, y > 0, 1 \neq a > 0$$

Iseful: $h(x) = f(x)^{g(x)} = e^{g(x) \ln(f(x))}$

Theorem:

Properties of functions $\arcsin(x)$, $\arccos(x)$, $\arctan(x)$, $\operatorname{arccos}(x)$, $\operatorname{ar$

$\overline{f(x)}$	$\arcsin(x)$	$\arccos(x)$	$\operatorname{arctg}(x)$	arccotg(x)
$\overline{D(f)}$	[-1,1]	[-1,1]	\mathbb{R}	\mathbb{R}
H(f)	$[-\frac{\pi}{2},\frac{\pi}{2}]$	[0 , π]	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	(0 , π)
increasing	\checkmark	—	\checkmark	_
decreasing	_	\checkmark	—	\checkmark
even	—	_	_	_
odd	\checkmark	_	\checkmark	_
$f^{-1}(x)$	sin(x)	$\cos(x)$	tg(x)	$\cot g(x)$
	$\pmb{x} \in [-rac{\pi}{2}, rac{\pi}{2}]$	$\pmb{x} \in [\pmb{0},\pi]$	$X\in \left(-rac{\pi}{2},rac{\pi}{2} ight)$	$x \in (0,\pi)$

Theorem: $\operatorname{arcsin}(x) + \operatorname{arccos}(x) = \frac{\pi}{2}$ for $x \in [-1, 1]$ $\operatorname{arctg}(x) + \operatorname{arccotg}(x) = \frac{\pi}{2}$ for $x \in \mathbb{R}$