## Homeworks for $7^{\text {th }}$ week

1. Using differential approximate the values
(a)

$$
\sqrt{382}
$$

(b)

$$
\ln 1,3
$$

(c)

$$
\sin (-0,02)
$$

(d)

$$
\operatorname{arctg} 1,1
$$

2. Compute the Taylor's polynomial of order 3 at point $x_{0}$
(a) $f(x)=x \cdot e^{-x}, x_{0}=0$
(b) $f(x)=\sqrt{x}, x_{0}=4$
(c) $f(x)=e^{-x^{2}}, x_{0}=0$
(d) $f(x)=\cos ^{2} x, x_{0}=\pi$
3. Find the differential of $f$ at point $x_{0}$ with general $\Delta x$
(a) $f(x)=\sqrt{x^{2}+1}, x_{0}=1$
(b) $f(x)=\sqrt{\frac{1+x}{1-x}}$
(c) $f(x)=x \sin 2 x, x_{0}=0$
4. Sketch the graph of function and draw the differential, difference and error of approximation (with general $\Delta x$ )
(a) $f(x)=e^{x+1}, x_{0}=-1$
(b) $f(x)=\ln (2-x)+1, x_{0}=1$
5. Using Taylor's polynomial of order $n$ approximate the values $h$
(a) $h=\sqrt[5]{e}, n=3$
(b) $h=\operatorname{cotg} 1,5, n=2$
6. Check the assumption of Newton's method and find the first approximation of roots of the function $f$
(a) $f(x)=e^{x}+x^{2}-3$
(b) $f(x)=x^{4}+x-1$ for the root on the interval $(0,1)$
