Homeworks for 6^{th} week

- 1. Find the intervals where the function is convex/concave. Determine the inflection points (if exist). (Don't forget the domains!)
 - (a) $f(x) = \frac{x}{\ln x}$ (b) $f(x) = x^2 \cdot e^{\frac{1}{x}}$
- 2. Find the intervals where the function is convex/concave. Determine the inflection points (if exist). (Don't forget the domains!)

(a)
$$f(x) = \frac{\ln x}{\sqrt{x}}$$

(b) $f(x) = \frac{x^2 + 1}{x^2 - 1}$

- 3. Find the intervals where the function is convex/concave. Determine the inflection points (if exist). (Don't forget the domains!)
 - (a) $f(x) = (1 + x^2) \cdot e^{-x^2}$ (b) $f(x) = x \ln^2 x$
- 4. Find the intervals where the function is convex/concave. Determine the inflection points (if exist). (Don't forget the domains!)
 - (a) $f(x) = \frac{1 + \ln x}{x}$ (b) $f(x) = \frac{x^3}{\sqrt{x^4 + 1}}$

Investigate the following functions

5.
$$f(x) = \frac{x}{\sqrt[3]{x^2 - 1}}$$

6. $f(x) = \frac{x^4}{4} + x^3$
7. $f(x) = x \cdot e^x$
8. $f(x) = \frac{1}{x - 1} \cdot e^{x - 1}$

Recommended excercises

- 1. Determine the intervals where the function is convex/concave
 - (a) $f(x) = \operatorname{arctg} \frac{x}{2x-4}$ (b) $f(x) = \frac{3x^3}{2x^2+6}$
- 2. Investigate the following functions
 - (a) $f(x) = x + 2\operatorname{arccot} gx$
 - (b) $f(x) = x + e^{-x}$ (c) $f(x) = \frac{\ln(x-1)}{x-1}$