Homeworks for $6^{\text {th }}$ week

1. Find the intervals where the function is convex/concave. Determine the inflection points (if exist). (Don't forget the domains!)
(a) $f(x)=\frac{x}{\ln x}$
(b) $f(x)=x^{2} \cdot e^{\frac{1}{x}}$
2. Find the intervals where the function is convex/concave. Determine the inflection points (if exist). (Don't forget the domains!)
(a) $f(x)=\frac{\ln x}{\sqrt{x}}$
(b) $f(x)=\frac{x^{2}+1}{x^{2}-1}$
3. Find the intervals where the function is convex/concave. Determine the inflection points (if exist). (Don't forget the domains!)
(a) $f(x)=\left(1+x^{2}\right) \cdot e^{-x^{2}}$
(b) $f(x)=x \ln ^{2} x$
4. Find the intervals where the function is convex/concave. Determine the inflection points (if exist). (Don't forget the domains!)
(a) $f(x)=\frac{1+\ln x}{x}$
(b) $f(x)=\frac{x^{3}}{\sqrt{x^{4}+1}}$

Investigate the following functions
5. $f(x)=\frac{x}{\sqrt[3]{x^{2}-1}}$
6. $f(x)=\frac{x^{4}}{4}+x^{3}$
7. $f(x)=x \cdot e^{x}$
8. $f(x)=\frac{1}{x-1} \cdot e^{x-1}$

Recommended excercises

1. Determine the intervals where the function is convex/concave
(a) $f(x)=\operatorname{arctg} \frac{x}{2 x-4}$
(b) $f(x)=\frac{3 x^{3}}{2 x^{2}+6}$
2. Investigate the following functions
(a) $f(x)=x+2 \operatorname{arccotg} x$
(b) $f(x)=x+e^{-x}$
(c) $f(x)=\frac{\ln (x-1)}{x-1}$
