Homeworks for $5^{\text {th }}$ week

1. Find the intervals where the function is increasing/decreasing. Determine local extrems.(Don't forget the domains!)
(a) $f(x)=\operatorname{arctg}(x-1)^{2}$
(b) $f(x)=\frac{2 x}{1+x^{2}}$
2. Find the intervals where the function is increasing/decreasing. Determine local extrema.(Don't forget the domains!)
(a) $f(x)=x^{2}-\ln x^{2}$
(b) $f(x)=x^{3} \cdot e^{-x}$
3. Find the intervals where the function is increasing/decreasing. Determine local extrema.(Don't forget the domains!)
(a) $f(x)=x \cdot e^{\frac{-1}{x}}$
(b) $f(x)=\frac{1+\ln x}{x}$
4. Find the intervals where the function is increasing/decreasing. Determine local extrema.(Don't forget the domains!)
(a) $f(x)=\frac{\ln x}{x^{2}}$
(b) $f(x)=x^{2} \cdot e^{\frac{1}{x}}$
5. Find the tangent of the graph of function f in a given point x_{0}.
(a) $f(x)=\frac{1}{1+x^{2}}, x_{0}=1$
(b) $f(x)=e^{-x^{2}}, x_{0}=1$
6. Find the constant $C \in \mathbb{R}$, such that the function f would be continuous.

$$
f(x)= \begin{cases}-\operatorname{arctg} x+C, & x \leq 0 \\ e^{x+1}, & x>0\end{cases}
$$

