Homeworks for $4^{\text {th }}$ week

Compute and simplify (as much as possible) the derivatives of following functions.

1. (a) $f(x)=\frac{\sqrt{x-2}}{1-3 x}$
(b) $f(x)=\cos ^{2} x \cdot 2^{x}+\sqrt{x+2} \ln 3 x$
(c) $f(x)=\ln \left(x+7^{x^{2}}\right)$
(d) $f(x)=\left(\frac{1}{x+1}\right)^{x}$
2. (a) $f(x)=\frac{2 x}{\sqrt{1-2 x}}$
(b) $f(x)=\log _{2} x \cdot \sin x-x e^{2 x}$
(c) $f(x)=\cos \left(\ln \left(2 x^{3}\right)\right)$
(d) $f(x)=(\ln x)^{\ln x}$
3. (a) $f(x)=\frac{x^{2}+1}{\sqrt{x}+1}$
(b) $f(x)=\cos x \cdot \operatorname{cotg} x+x^{3} \sqrt{x}$
(c) $f(x)=\sqrt{\frac{1}{\ln \left(x^{2}+1\right)}}$
(d) $f(x)=x^{\cos x}$
4. (a) $f(x)=\frac{\sqrt{3-x}}{1-x^{2}}$
(b) $f(x)=\frac{1}{3^{x}} \cdot \ln x+\cos x^{2} \cdot \frac{1}{x}$
(c) $f(x)=\operatorname{arctg} \sqrt{x^{2}-1}$
(d) $f(x)=x^{\frac{1}{x}}$
5. Determine the domain of the function and find the limits at endpoints of the domain.
(a)

$$
f(x)=\frac{e^{3 x}}{x^{2}-2 x-3}
$$

(b)

$$
f(x)=\frac{x^{2}-1}{\log _{0,5}(x-1)}
$$

(c)

$$
f(x)=\frac{e^{x}}{\ln |x-1|}
$$

(d)

$$
f(x)=e^{-2 x} \sqrt{x^{2}-3 x-4}
$$

6. Compute the derivatives (or one-handed derivatives) of the function.

$$
f(x)= \begin{cases}\operatorname{arctg} x, & x \leq 0 \\ x^{2}, & x>0\end{cases}
$$

7. From definition compute the derivative of the function f at point $x=1$.

$$
f(x)= \begin{cases}\sqrt{x-1}, & x>1 \\ x^{3}-1, & x \leq 1\end{cases}
$$

Recommended exercises

1. Compute and simplify the derivatives of the functions.
(a) $f(x)=x \arcsin \frac{1}{x}+\ln \left(x+\sqrt{x^{2}-1}\right)$
(b) $f(x)=\ln \frac{1-e^{-2 x}}{1+e^{-2 x}}$
(c) $f(x)=\ln \frac{x-2}{x+2}$
(d) $f(x)=x^{\sqrt{x}}$
2. Compute the second derivatives of the following functions.
(a) $f(x)=(\log (\ln x))^{3}$
(b) $f(x)=x \cdot x^{\frac{1}{\ln x}}$
3. Compute the derivative of the function f.

$$
f(x)= \begin{cases}x \operatorname{arctg} \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

