Homeworks for $2^{\text {nd }}$ week

Find the ranges of following functions. Are they injective (give reason)? If so, find the formula of f^{-1}.

1. $f(x)=\sqrt{1-\log \left(\frac{x+2}{4}\right)}$
2. $f(x)=\arcsin \sqrt{1-4 x^{2}}$
3. $f(x)=\frac{\pi}{2}+\operatorname{arctg} \sqrt{x-1}$
4. $f(x)=\log _{\frac{1}{2}} \sqrt{9 x^{2}-4}$
5. $f(x)=1-\sqrt{\log _{5}(6-x)}$
6. $f(x)=\operatorname{arctg} \frac{1}{(x-3)^{6}}$
7. $f(x)=\sqrt{4-\sqrt{4-x}}$
8. $f(x)=\operatorname{arctg} \sqrt{x^{2}-x}$
9. $f(x)=(\log (\sqrt{x}))^{3}$.
10. $f(x)=\sqrt{\frac{\pi}{6}-\operatorname{arccotg} \sqrt{x}}$
11. Sketch the graphs of following functions
(a) $f(x)=-\cos \left(x-\frac{\pi}{6}\right)+1$
(b) $f(x)=\sin \left(\frac{\pi}{4}-x\right)$
12. Consider two increasing functions f and g. Prove that a composition $h=f \circ g$ is an increasing function. If f is increasing and g is decreasing are $f \circ g$ and $g \circ f$ increasing or decreasing?
