Problems and excercises 1^{st} week

1. Sketch the graphs of following functions. Determine the domains and ranges.

(a)
$$f(x) = 2\log_4(1-x)$$

(b)
$$f(x) = \frac{x+1}{2}$$

(a)
$$f(x) = 2\log_4(1-x)$$

(b) $f(x) = \frac{x+1}{2-x}$
(c) $f(x) = -\sqrt{3x+5}+1$

2. Determine the domains of the definition.

(a)
$$f(x) = \frac{1}{\ln(5-x^2)}$$

(b)
$$f(x) = \sqrt{\log_{\frac{1}{2}}(x-3)}$$

(a)
$$f(x) = \frac{1}{\ln(5-x^2)}$$

(b) $f(x) = \sqrt{\log_{\frac{1}{2}}(x-3)}$
(c) $f(x) = \frac{1}{\sqrt{\log_2(x+4)-3}}$

(d)
$$f(x) = \sqrt{\sin x - \frac{1}{2}}$$

(e)
$$f(x) = \ln \log x^2$$

(e)
$$f(x) = \ln \log x^2$$

3. Consider strictly decreasing function f on some set M. Prove that a function -f is increasing on M. (Obviously, this proposition is reversible).