Homeworks for $13^{\text {th }}$ and $14^{\text {th }}$ week

1. Decide whether the following vectors are linear independent
(a) $\mathbf{u}_{1}=(1,-1,3), \mathbf{u}_{2}=(2,0,4), \mathbf{u}_{3}=(3,1,5)$
(b) $\mathbf{u}_{1}=(1,3,0), \mathbf{u}_{2}=(2,1,1), \mathbf{u}_{3}=(0,1,-1)$
(c) $\vec{u}=(2,-3,5), \vec{v}=(1,0,-2), \vec{w}=(2,-1,4)$
2. Find the rank of following matrices
(a) $\left(\begin{array}{ccc}0 & 2 & 0 \\ 1 & 2 & -5 \\ -2 & 3 & 6\end{array}\right)$
(b) $\left(\begin{array}{ccc}3 & 5 & -3 \\ 3 & 7 & 2 \\ 0 & 1 & -4\end{array}\right)$
3. Compute the determinants
(a) $\left(\begin{array}{ll}5 & 9 \\ 3 & 4\end{array}\right)$
(b) $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{rrr}0 & -2 & 1 \\ -4 & 5 & -2 \\ 5 & -3 & 1\end{array}\right)$
4. Using Frobenius Theorem decide whether the system of linear equation has a solution, find it and describe the set of solutions
(a)

$$
\begin{array}{r}
x+2 y-z=1 \\
2 x+3 y+z=2 \\
x+3 y-2 z=1
\end{array}
$$

(b)

$$
\begin{aligned}
2 x+y+3 z & =1 \\
y+2 z & =0 \\
x+2 y+z & =4
\end{aligned}
$$

(c)

$$
\begin{array}{r}
x+2 y+z=-1 \\
2 x-y+2 z=3 \\
-x-y-z=0
\end{array}
$$

