Homeworks for 11^{th} and 12^{th} week

1. Find the solution of the equation

$$y' = \frac{(2x+1)y}{x^2 + x}$$

with initial condition

(a)
$$y(-\frac{1}{2}) = 0$$

(b) $y(1) = 2$
(c) $y(-\frac{1}{2}) = 1$

- 2. Find the general solution of the differential equation $y' + y \cos x = 0$
- 3. Using Euler's method with step h = 0.5 approximate function value y(2,5) of the function y which is a solution of the differential equation

$$y' = -\frac{y}{x} - 2y^2$$

with initial condition y(1) = 1.

Recommended excercises

1. Find the solution of the differential equation

$$y' = \frac{e^{-y}}{x}$$

with initial condition y(1) = 0.

2. Find the solution of the differential equation

$$y' = 6x^2\sqrt{y}$$

with initial condition y(1) = 4.

3. Find the general solution of the differential equation

$$y' - \frac{y}{x} = xe^x$$