Popisná statistika

Komentované řešení pomocí MS Excel

Vstupní data

	А	В	С
1	Student(ka)	Body z 1. PP	Body z 2.PP
2	1	43	65
3	2	37	43
4	3	27	7
5	4	33	70
6	5	41	19
7	6	55	34
760	759	36	37
761	760	59	58
762	761	89	88
763	762	44	28

- Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů, kteří psali oba testy.
- Ukázka části tabulky se vstupními daty viz. obrázek vlevo.
- V dalším budeme předpokládat, že tabulka se vstupními daty je umístěna v oblasti A1:C7633 (viz. obrázek).

Vybrané kvantily

- Kvantily rozdělují uspořádaný soubor hodnot na dvě části dle předem zadaného poměru četností.
- Vzorce pro výpočet kvantilů pro 1.PP (sloupec B) jsou na obrázku vpravo, překopírováním do sloupce C dostaneme kvantily i pro 2.PP. Tímto způsobem budeme prezentovat vzorce a vypočítané hodnoty i na ostatních snímcích.

	А	В	С		В
765	Vybrané kvantily	1. PP	2.PP	765	1. PP
766	Minimum	0	0	766	=MIN(B\$2:B\$763)
767	První decil (x _{0,1})	16	8	767	=PERCENTIL(B\$2:B\$763;0,1)
768	Dolní kvartil (x _{0,25})	30	21	768	=QUARTIL(B\$2:B\$763;1)
769	Medián (x _{0,5})	45	< 39	769	=MEDIAN(B\$2:B\$763)
770	Horní kvartil (x _{0,25})	65	56	770	=QUARTIL(B\$2:B\$763;3)
771	Poslední decil (x _{0,9})	78,9	71	771	=PERCENTIL(B\$2:B\$763;0,9)
772	Maximum	100	100	772	=MAX(B\$2:B\$763)

- Kvantily použijeme jako vstupy pro výpočet různých charakteristik polohy a variability a pro konstrukci krabicového grafu (viz. další snímky).
- Kvantily nám však samy o sobě pomohou získat představu o poloze a variabilitě dat. Vidíme, že z druhého testu studenti dosahovali spíše méně bodů než v prvním testu, variabilita bodových výsledků je v obou testech srovnatelná. Lépe to však bude vidět na charakteristikách polohy a variability na dalších snímcích.

Míry polohy

- Pro posouzení polohy (středního množství počtu bodů) použijeme dva ukazatele
 - Aritmetický průměr (patří do třídy momentových charakteristik)
 - Medián (kvantilová charakteristika)

- Z hodnot průměrů i mediánů je patrné, že ve druhém testu dosahovali studenti spíše méně bodů.
- Střední počet bodů je u obou testů mírně pod 50 body.

Míry variability

- Variabilitu (měnlivost, míru rozptýlení) posoudíme pomocí těchto ukazatelů
 - Rozptyl (momentová charakteristika),
 - Směrodatná odchylka (momentová charakteristika),
 - Variační rozpětí (kvantilová charakteristika),
 - Decilové rozpětí (kvantilová charakteristika),
 - Kvartilové rozpětí (kvantilová charakteristika),
 - Variační koeficient (relativní míra variability.

	А	В	С
779	Míry variability	1. PP	2.PP
780	Rozptyl	539,0	552,9
781	Směrodatná odchylka	23,2	23,5
782	Variační rozpětí	100	100
783	Decilové rozpětí	62,9	63
784	Kvartilové rozpětí	35	35
785	Variační koeficient	0,50	0,60

	В
779	1. PP
780	=VAR(B\$2:B\$763)
781	=SMODCH(B\$2:B\$763)
782	=B\$772-B\$766
783	=B\$771-B\$767
784	=B\$770-B\$768
785	=B781/B776

- Momentové i kvantilové charakteristiky ukazují, že (absolutní) variabilita počtu bodů v obou testech je velmi podobná.
- V průměru se počet dosažených bodů od celkového průměru liší o cca 23 bodů (směrodatná odchylka).
- Bodové výsledky 80 % studentů se nachází v intervalu šířky 63 bodů (decilové rozpětí), počty bodů 50 % studentů jsou koncentrovány v intervalu šířky 35 bodů (kvartilové rozpětí).
- Relativní variabilita (směrodatná odchylka vztažena ku průměrnému počtu bodů) je u prvního testu trochu vyšší než u druhého testu, a to kvůli vyššímu průměru.

Míra (lineární) závislosti

• Sílu lineární závislosti posoudíme pomocí Pearsonova korelačního koeficientu, který je odvozen od druhých momentů obou proměnných

	А	В	
787	Míry linearní závislosti		В
788	Korelační koeficient	0,68	788 =CORREL(\$B\$2:\$B\$763;\$C\$2:\$C\$76

- Kladná hodnota korelačního koeficientu svědčí o pozitivní lineární závislosti mezi počty bodů z prvního a druhého testu. Měl-li student nadprůměrný počet bodů v prvním testu, dá se očekávat, že měl i nadprůměrný počet bodů v druhém testu (a naopak).
- Nelze ovšem říci, že studenti se ve druhém testu nezhoršovali. Vzhledem k tomu, že průměrný počet bodů ve druhém testu je nižší než v prvním, mohli se studenti zhoršit i v případě pozitivní závislosti. Ta se totiž týká porovnání počtu bodů s průměrem.
- Posuzování intenzity závislosti podle velikosti korelačního koeficientu je arbitrární a v různých úlohách se může lišit. Často se však užívá obecné, empirické, pravidlo (viz. níže). Podle tohoto pravidla svědčí hodnota korelačního koeficientu 0,68 o relativně silné pozitivní závislosti, ne však perfektní závislosti. Znamená to tedy, že v některých případech se mohli studenti zhoršit i v porovnání s ostatními studenty (přesněji v porovnání s průměrem). Těchto případů však nebude mnoho.
- Síla i tvar závislosti dobře ilustruje bodový graf, který uvádíme na zvláštním snímku (viz. poslední snímek).

	E	F
787	Hodnota korelačního koeficientu	Interpretace
788	-1	perfektní negativní lineární závislost
789	-0,7	silná negativní lineární závislost
790	-0,5	mírná negativní lineární závislost
791	-0,3	slabá negativní lineární závislost
792	0	žádná lineární závislost
793	0,3	slabá pozitivní lineární závislost
794	0,5	mírná pozitivní lineární závislost
795	0,7	silná pozitivní lineární závislost
796	1	perfektní pozitivní lineární závislost

Krabicový graf (box plot) 1

Postup:

- Excel nenabízí krabicový graf v základní nabídce grafů. Krabicový graf ale můžeme vytvořit vhodným nakombinováním sloupcových grafů.
- Nejdříve si spočítáme pomocné hodnoty pro tvorbu grafu (viz. vedlejší tabulka).
- Označíme oblast B800:C803 → karta "Vložení" → "Sloupcový" (panel "Grafy") → "Skládaný sloupcový".
- Karta "Návrh" → "Přepnout řádek či sloupec".
- Nyní přidáme dolní fousy: označíme v grafu spodní sloupce ("Skrytý sloupec") → karta "Rozložení"→"Chybové úsečky" →"Další možnosti chybových úseček"→ "Svislé chybové úsečky"→ vybereme Směr: "Minus" a Typ chybové hodnoty: "Vlastní" a stiskneme "Zadat hodnotu" → do pole "Záporná chybová hodnota vložíme oblast s délkou dolního fousu B808:C808.
- Podobně se přidají horní fousy: v grafu se označí horní sloupce ("sloupec nad mediánem") a dále se postupuje analogicky, akorát se zadá Směr: "Plus" a do pole "Kladná chybová hodnota" se zadá oblast s délkou horního fousu B809:C809.
- Označíme spodní sloupce → "Formát datové řady"→ Výplň: "Bez výplně".
- Podobným způsobem upravíme výplně ostatních dvou sloupců (zadáme stejnou barvu) a přidáme ohraničení, zadáme Barva ohraničení: "Plná čára" a Barva: Černá.
- Pro větší přehlednost:
 - Odstraníme legendu,
 - Upravíme Minimum, Maximum a Hlavní jednotku,
 - Přidáme název grafu a název svislé osy.

	А	В	С		В
800	Krabicový graf	1. PP	2.PP	800	1. PP
801	skrytý sloupec	30	21	801	=B768
802	sloupec pod mediánem	15	18	802	=+B769-B768
803	sloupec nad mediánem	20	17	803	=B770-B769
804	mez pro dolní fous	-23	-32	804	=B768-1,5*B784
805	mez pro horní fous	118	109	805	=B770+1,5*B784
806	hranice dolního fousu	0	0	806	=+B766
807	hranice horního fousu	100	100	807	=B772
808	délka dolního fousu	30	21	808	=+B801-B806
809	délka horního fousu	35	44	809	=B807-SUMA(B801:B803)

Krabicový graf (box plot) 2

Interpretace výsledků

- Krabicové grafy potvrzují naše předchozí úsudky na základě spočítaných charakteristik – v prvním testu dosahovali studenti o trochu více bodů, variabilita je v obou testech srovnatelná
- Došlo také k malé změně rozdělení počtu bodů (viz. posun mediánu uvnitř krabice u druhého testu)
- Vzhledem k tomu, že počet bodů je shora omezen 100 a zespoda 0, nejsou v datech žádná odlehlá pozorování.

Histogram 1

Postup:

- Nejdříve musíme určit intervaly (arbitrárně nebo pomocí nějakého empirického pravidla). Pro přehlednost a díky dostatečnému počtu pozorování zvolíme intervaly šířky 10 bodů.
- Dále spočítáme četnost pozorování v jednotlivých intervalech (viz. tabulka vpravo).

	А	В	С	D	E	
812	Histogram					
813		Interval		Če	tnost	
814	Dolní mez	Horní mez	Popis	1. PP	2.PP	
815	0	10	0-10	38	97	
816	11	20	11-20	75	84	
817	21	30	21-30	90	105	
818	31	40	31-40	115	119	
819	41	50	41-50	123	119	
820	51	60	51-60	105	90	
821	61	70	61-70	81	63	
822	71	80	71-80	70	45	
823	81	90	81-90	45	24	
824	91	100	91-100	20	16	
825		Celkem		762	762	

	D
81	2
81	3 Četnost
81	4 1. PP
81	5 =COUNTIFS(B\$2:B\$763;">="&\$A815;B\$2:B\$763;"<="&\$B815)
81	6 =COUNTIFS(B\$2:B\$763;">="&\$A816;B\$2:B\$763;"<="&\$B816)
81	7 =COUNTIFS(B\$2:B\$763;">="&\$A817;B\$2:B\$763;"<="&\$B817)
81	8 =COUNTIFS(B\$2:B\$763;">="&\$A818;B\$2:B\$763;"<="&\$B818)
81	9 =COUNTIFS(B\$2:B\$763;">="&\$A819;B\$2:B\$763;"<="&\$B819)
82	0 =COUNTIFS(B\$2:B\$763;">="&\$A820;B\$2:B\$763;"<="&\$B820)
82	1 =COUNTIFS(B\$2:B\$763;">="&\$A821;B\$2:B\$763;"<="&\$B821)
82	2 =COUNTIFS(B\$2:B\$763;">="&\$A822;B\$2:B\$763;"<="&\$B822)
82	3 =COUNTIFS(B\$2:B\$763;">="&\$A823;B\$2:B\$763;"<="&\$B823)
82	4 =COUNTIFS(B\$2:B\$763;">="&\$A824;B\$2:B\$763;"<="&\$B824)
82	5 =SUMA(D815:D824)

- Pro histogram bodů z prvního testu označíme oblast D814:D824 → karta "Vložení" → "Sloupcový" (panel "Grafy") → "Skupinový sloupcový".
- Označíme sloupce v grafu (datovou řadu) → "Formát datové řady"→ v záložce Možnosti řady upravíme Šířka mezery: 0% (Bez mezery)
- Přidáme popisky x-ové osy: Karta "Návrh"→ "Vybrat data" → ve sloupci Popisky vodorovné osy stiskneme "Upravit"→ vybereme oblast C815:C824
- Pro větší přehlednost odstraníme legendu, přidáme název grafu a názvy os
- Analogicky vytvoříme histogram pro druhý test

Histogram 2

Interpretace výsledků

- Rozdělení počtu bodů v prvním testu je dosti symetrické kolem středu (lze pozorovat jen velmi mírné pozitivní zešikmení) a neliší se příliš od Gaussovy křivky.
- Rozdělení počtu bodů v druhém testu je více pozitivně zešikmené. Nalevo od střední hodnoty jsou body rozděleny mnohem rovnoměrněji než napravo, kde četnosti klesají podobně jako Gaussova křivka.
- Oproti prvnímu testu můžeme pozorovat u druhého testu výrazné navýšení počtu studentů s velmi malým počtem bodů (0-10), to je také jeden z hlavních důvodů poklesu průměrného počtu bodů.

Bodový graf

Postup

- Označíme oblast s individuálními daty B1:C763 \rightarrow karta "Vložení" \rightarrow "Bodový" (panel "Grafy") \rightarrow "Bodový pouze se značkami".
- Označíme body na grafu (datovou řadu) \rightarrow "Přidat spojnici trendu" \rightarrow vybereme Typ trendu a regrese: "Lineární".
- Pro větší přehlednost odstraníme legendu, přidáme název grafu a názvy os.

Interpretace výsledků

Bodový graf potvrzuje existenci relativně silné pozitivní lineární závislosti mezi počty bodů z prvního a druhého testu. Závislost však není perfektní – někteří studenti se dosti zlepšili ve druhém testu (body vlevo nahoře), někteří zase zhoršili (body vlevo dole). Většina studentů je však soustředěna kolem regresní přímky.