

Greenhouse Gases Mitigation CO₂ Capture and Utilization

Topic No: 9

- 1. fluctuations in power generation from renewables
- 2. overview of electricity production stabilization
- 3. high-temperature generation IV reactors
- 4. overview of hydrogen production techniques
- 5. water electrolysis
- 6. water thermolysis
- 7. biomass pyrolysis

Reference(s): -

Renewable sources: power fluctuations

Slide 3

- The main fluctuations occur during the day, week and in the seasons
- Statistical data on electricity production available on the portal:

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Topic

Renewable sources: power fluctuations

Example: Germany = EU leader in the installation of renewable sources

There are three basic ways to achieve it:

Reference(s): -

Topic

- Yes, by using Gas-cooled Fast Reactors or High Temperature Reactors
 - so called Generation IV reactors
 - cooled by He or supercritical CO₂ (instead of current pressure water reactors)
 - 2023: first Gen IV reactor enters commercial operation in China
 - > 2 modular reactors 2×250 MWt driving a single 210 MWe electric generator
 - closed cycle of fuel: transformation of ²³⁸U into fissionable ²³⁹Pu
 - 50 time higher use of fuel + lower toxicity of spent fuel

- Production of hydrogen from excess energy from renewable sources
 - Still in R&D; there are many technical solutions:

- Three main types of electrolyzers
 - Proton exchange membrane (PEM)

water introduced at the anode where it is split into H⁺

H⁺ travels through membrane to the cathode to form H_2 and O_2

Anode: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ Cathode: $4H^+ + 4e^- \rightarrow 2H_2$

Alkaline electrolyzers

water introduced at the cathode where it is split into H₂ and OH⁻

H₂ separated from water in an external separation unit

OH- ions travel through the electrolyte to the anode to form O₂

Cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ Anode: $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$

Solid oxide electrolysis cells (SOEC) - the same principle as alkaline but part of electricity replaced with thermal

- Alkaline electrolyzers
 - ▶ water split into H_2 and OH^- at the cathode
 - \triangleright OH⁻ ions travel through the electrolyte to the anode to form O₂

- Increase in performance, e.g. by increasing the area of the electrodes
 - Example: electrodes and diaphragms arranged in a module

- Operation temperatures
 - Proton exchange membrane (PEM) 70 90 °C
 - Alkaline electrolyzers < 100 °C</p>
 - ► Solid oxide electrolysis cells (SOEC) 700 800°C
- Commercially available alkaline electrolyzers
 - Energy consumption
 - Efficiency up to 73%
 - Despite the technical development, the production price is still high.
 - Hydrogen production costs depend on different electricity sources.

e.g. (2017)	Nuclear	4.15 \$/kg
	Solar thermal	7.00 \$/kg
	Solar photovoltaic	10.49 \$/kg
	Wind	5.10 – 6.46 \$/kg

Energy Earthshots Initiative goal:

Desired H₂ cost

Reference(s): 3.7

Topic

53.4 kWh/kg H_2

Thermochemical water splitting (Thermolysis)

- Multiple principles (simple thermal and more advanced thermochemical)
 - ► Simple thermal decomposition requires T > 2,500 °C \Rightarrow not feasible
 - Thermochemical water-splitting cycles lower the temperature and improve the overall efficiency:
 - General principle of thermochemical water-splitting
 - A suitable inorganic salt reacts with steam to produce hydrogen. Heat is supplied by solar radiation.

Thermochemical water splitting (Thermolysis)

- Multiple principles (simple thermal and more advanced thermochemical)
 - ► Simple thermal decomposition requires T > 2,500 °C \Rightarrow not feasible
 - Thermochemical water-splitting cycles lower the temperature and improve the overall efficiency:
 - Examples of the most promising Thermochemical cycles

Biomass pyrolysis + bio-fuel processing

- Multi-stage thermochemical process of thermal decomposition of biomass
 - pyrolysis produces solid residue (char), gas (CO, CO₂, H₂, C_xH_y) and condensate (tar)
 - bio-fuel (gas + tar) is reformed by steam to CO + H₂
 - CO undergoes water-gas shift reaction to CO₂
 - ► CO₂ is separated by adsorption

All of the approaches are less or more suitable for biomass conversion

Continuous low and medium temperature pyr.

- Rotary cylindrical pyrolyzer with external heating by gas burners
 - cylindrical pyrolyzers exclusively for non-fusible materials

1 – biomass feeder, 2 – reactor, 3 – flue gas outlet, 4 – pyrolysis gas burners, 5 – char screw conveyor, 6 – high temperature tar separator, 7 – condenser, 8 – condensates tank, 9 – flue gas cleaning

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Topic

A screw pyrolyzer, where a heated screw is the heat source

heating rate and dwell time given by screw rotation speed

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Batch low and medium temperature pyr.

- The rate of heating and the composition of the products are influenced, among other things, by the size and geometry of the reactor.
- Almost universal design
- 1 reactor with a heating jacket
- 2 agitator drive
- 3 condenser
- 4 condensate tank
- 5 level gauge
- 6 char screw conveyor

©Marek.Staf@vscht.cz

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Each of the trapping mechanisms plays a role in how the CO₂ remains trapped in the subsurface

Reference(s): -

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Types of subsurface trapping available for CO₂ underground storage

Types of subsurface trapping available for CO₂ underground storage

Topic 9 Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Types of subsurface trapping available for CO₂ underground storage

Solubility Trapping

CO₂ dissolves into the brine water that is present in the pore spaces within the rock.

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Types of subsurface trapping available for CO₂ underground storage

Mineral Trapping

CO₂ dissolves in water and forms a weak carbonic acid. Over extended periods, it reacts with minerals to: CaCO₃, MgCO₃

Reference(s): 9

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

- 1. https://app.electricitymaps.com
- 2. Magwood, W., D., Paillere, H. Looking ahead at reactor development. Progress in Nuclear Energy 2018, 102, 58-67
- P. 606 Nikolaidis, A. Poullikkas / Renewable and Sustainable Energy Reviews 67 (2017) 597– 611
- 4. https://hydrogen.messergroup.com/facts
- 5. https://www.mdpi.com/1996-1073/10/7/860
- 6. https://i0.wp.com/www.h2-international.com/wp-content/uploads/2017/06/Nel-Akzo-Nobel.jpg?ssl=1
- 7. Bartels JR, Pate MB, Olson NK. An economic survey of hydrogen production from conventional and alternative energy sources. Int J Hydrog Energy 2010;35(16):8371–84.
- 8. xxx
- 9. https://netl.doe.gov/carbon-management/carbon-storage/faqs/carbon-storage-faqs