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■ Nicolas Joseph Cugnot: Le fardier à vapeur (1770)

► Weight 2.5 t, the payload 4 t, max. speed 9 kmh-1

► Saturated steam drive, boiler not equipped with superheater

► Intended for military purposes ….. but the tricycle evaluated as unstable by 

the army

The beginnings of motorized road transport

17 3



■ The following 100 years (1780 - 1880) very slow development

► Basically just improving the steam engine

► James Watt (1736 – 1819):

1763 – improvements of the Newcomen‘s steam Engine started

1769 – patented separate steam condenser = increased machine 

efficiency

by 1800 – only ca. 500 engines produced (textiles, metallurgy, mills)

1800 – patent expiration  then new manufacturers

The beginnings of motorized road transport

2, 37 4



■ The following 100 years (1780 - 1880) very slow development

► Slow increase of the steam Engine efficiency from 5 to ca. 12 %

► Steam cars expensive and not very practical (scared horses, unsafe riding)

► Restrictions, e.g. 1865 “Red flag act”  speed limit: 4mph in the country 2mph 

in towns + vehicle had to be preceded by a person carrying a red flag 

The beginnings of motorized road transport

4, 57 5

Trevithick: “The puffing devil” (1801) Baffrey: steam car (1886)



■ Technological breakthrough

► 1877 – Nicolaus Otto patented the gasoline 4-stroke engine

► 1886 – Karl Benz: German patent No. 37435a: gasoline tricycle

power: 0,66 kW at 400 rpm; cylinder vol. 954 cm3

Operational speed 11 km h–1;  max. speed 16 km h–1

The beginnings of motorized road transport

67 6

Nicolaus Otto Karl Benz



■ Pioneer of world motorization - Henry Ford

► First production Model T car built in September 27, 1908 at the Piquette Plant 

in Detroit - start of mass production of vehicles

► From 1914 the annual production of Model T reached 300,000 cars.

Development of automobile transport

77 7



■ Continuous increase after WWII

► Actual number (2016): 1.32 109 (personal cars + truck + buses)

Development of automobile transport
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■ Spark ignition engines

► Gasoline (95, 98, or 100 octane) + up to 5% ethanol (annual sum min. 4.1%)

► Ethanol-rich fuel E85 with ethanol content 70 – 85% according to the season

► Compressed Natural Gas (CNG)

► Liquefied Petroleum Gas (LPG): winter 40% butane / summer 60% butane

■ Compression ignition engines

► Diesel fuel containing up to 7% FAME

► Mixed diesel fuel containing up to 31% FAME

■ Hybrid vehicles

► MHEV – Mild Hybrid Electric Vehicle

► HEV – “classic” Hybrid Electric Vehicle combustion engine + el. motor

► PHEV – Plug-in Hybrid Electric Vehicle

■ Electric vehicles

► BEV – Battery Electric Vehicle

► FCBEV – Fuel Cell Battery Electric Vehicle

Currently available energy sources
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■ MHEV – Mild Hybrid Electric Vehicle

► the main propulsion unit = an internal combustion engine

► the auxiliary system consists of a starter-generator with a battery

► the starter-generator most often connected to the engine by a pulley (starter + 

energy recovery when braking – subsequently used for acceleration)

► the electric motor power = ca. 12 kW (at 45 V) - not intended to drive

► sometimes the el. motor drives the air blower and assists the turbocharger

■ HEV – “classic” Hybrid electric vehicle

► electrical assistance during start-up and acceleration + shorter electric drive

► It does not allow charging from the wall plug.

► more solutions: possible starting with the combustion Engine, or only electric

■ PHEV – Plug-in Hybrid Electric Vehicle

► two full-fledged motors; purely electric driving in the order of tens of km

► battery charged externally (like BEV)

► driving with a dead battery not recommended  battery only a ballast load

Differences between hybrid technologies
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■ A mixture of air and gasoline aerosol prepared and subsequently ignited by 
an electric spark

► The oldest system with a carburettor: the aerosol created by passing air 

through a nozzle

► A more modern system with indirect injection: gasoline injected outside the 

cylinder space into the intake air

► The latest direct injection system: gasoline injected directly into the cylinder 

at the beginning of the compression phase

■ Air/fuel ratio

► Older engines with carburetor used sub stoichiometric air content

► Modern engines use the excess air coefficient λ = 1 ± 0.1

■ Working cycle

► Majority of modern cars uses the Otto 4-stroke cycle

► Old cars (before 1990) also used Otto 2-stroke cycle

► Especially for hybrid cars the Atkinson cycle is preferred (higher efficiency, but 

lower power)

Principle of spark ignition engines
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2-stroke spark ign. engines (chainsaws etc.)
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4-stroke spark ign. engines (cars)

-7 13



■ In the first stage, only air is introduced into the cylinder

■ After its adiabatic compression, fuel is injected into the cylinder by a high-
pressure pump

► Temperature of compressed air 700 – 900 °C

► Temperature must be higher than flammability limit of the fuel (diesel fuel 

typically 320 – 380 °C)

■ Air/fuel ratio

► Excess air coefficient λ = 1.3 – 1.4 (naturally aspirated engines)

► Excess air coefficient λ = 1.6 – 2.0 (engines with turbochargers)

Note: Naturally aspirated engines offer generally low performance

Turbocharger uses residual pressure

of exhaust gas to compress the air:

Principle of compression ignition engines
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4-stroke compression ign. engines (cars)
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■ 5 different groups of emissions

► CO2 – cannot be (effectively) captured from exhaust gases

► NOx, PM, CO, CxHy – there are efficient methods for their removal

Emissions from internal combustion engines
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■ Carbon dioxide

► product of complete combustion of hydrocarbon-based fuels.

■ Carbon content in liquid and gaseous fuels

■ Pathways leading to a decrease in emissions 

► to replace high-carbon fuel with low-carbon fuel

► to decrease total fuel consumption

by increasing efficiency (technical limits)

by hybrid technology implementation

Main methods of reducing emissions

-7 17

Diesel Gasoline LPG CNG Ethanol FAME

C content (wt. %) 86,0 85,5 84,0 74,3 52,2 77,0

Efficiency ηOtto cycle= 25 – 38%

Efficiency ηDiesel cycle= 30 – 42%



■ Carbon dioxide – emissions depend on fuel consumption

► Example for the spark ignition engine combusting 95 octane gasoline:

Main methods of reducing emissions
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■ Primary methods to suppress NOx, CO, PM and CxHy emissions

► Improvement of fuel mixture preparation (indirect vs. direct injection, “pumpe

düse vs. common rail etc.)

► Improved ignition (longer electrode distance + longer spark time)

► Exhaust gas recirculation (NOx suppression)

► Reduction of tolerances in the combustion part of the engine

► Lambda combustion control  continuous control of the fuel/air ratio

► Controlling the movement of the mixture in the cylinder

► Switching off some cylinders when the engine runs at lower performance

► Variable Valve Timing …..the Start/Stop system etc.

■ Secondary methods

► Implementation of catalysts (destruction of CO, CxHy and NOx)

► Implementation of filters (separation of PM)

Main methods of reducing emissions
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■ Gasoline injection (widespread in half of 1980s)

► replacement of the old carburettor system

► Unlike the older

carburettor, it enables

λ-regulation.

► λ-regulation = precise control

of the air/fuel ratio

► λ-regulation – essential condition

for the 3-way catalyst operation

Spark ignition engines: precise fuel dosing
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■ The probe detects O2 in the exhaust gas, the ECU then controls the fuel/air 
ratio.

■ The signal from the common probes is the voltage between the electrodes.

■ The signal changes in steps:

► λ > 1 generates 0.1 – 0.2 V oxygen rich mixture prolong injection

► λ = 1 generates 0.45 V stoichiometric combustion injection OK

► λ < 1 generates 0.7 – 1.0 V fuel rich mixture shorten injection

Spark ignition engines: λ-regulation 

97 21

Electric 
connection + 
heating to 350 °C



■ Three-way catalyst: common destruction of CxHy, CO and NOx

► As a rule, a ceramic carrier coated by active component (Pt + Pd + Rh)

► All placed in a metal, internally sprung case

► Carrier = magnesium-aluminum-silicate ceramic block with an Al2O3 surface 

layer

► Operating temperature

min. 300°C

optimal 400 – 800 °C

risky < 1,000 °C

destructive > 1000 °C

Spark ignition engines: 3-way catalyst
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■ The system consists of separated catalysts and particle filter

■ More complicated solutions for emissions – due to λ > 1 (always);

■ Compared to gasoline engines, NOx must be reduced using SCR and solid 
particles must be separated by filtration in a DPF filter;

■ SCR principle: reduction by injection of urea solution

► so-called AUS 32 = 32.5% urea in water with a crystallization point of -11 °C

■ Urea solution supplied under the trade name AdBlue

► AdBlue injected before the exhaust gas catalyst (mixing with flue gas followed 

by decomposition into NH3 + CO2)

Compression ignit. engines: complex system
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■ The system consists of separated catalysts and particle filter

Compression ignit. engines: complex system

107 24

EGR – Exhaust Gas Recirculation

ECU – Engine Control Unit

DPF – Diesel Particle Filter

DPS – Differential Pressure Sensor

SCR – Selective Catalytic Reduction

VGT – Variable Geometry Turbocharger



■ DPF separates mainly soot with automatic regeneration each 300-500 km

■ Regeneration by heating to approx. 600°C with subsequent burning of soot

■ Heating by fuel injection into the cylinders with the exhaust valves open

Compression ignit. engines: DPF

107 25

Regen. conditions:

hot engine

speed min. 55 – 60 km/h

Problem:

short trips with cold engine

permanent ∆p increase



■ Two solutions are currently available

► System with direct wheel drive

(without classic gearbox)

often a chassis on a frame

(skateboard-like construction)

BEV: the main approaches

11, 127 26

► Similar to a classic car

self-supporting body

engine with automatic transmission



■ Metallic lithium

► Lithium is a low-density alkali metal with a melting point of only 180.54 °C.

► It is a highly reactive element that oxidizes even in air. It is stored safely in 

kerosene.

■ Natural occurrence

► A relatively rare element, contained in rocks especially based on 

aluminosilicates, but in ores usually less than wt. 5%

BEV: lithium-ion battery

137 27

Lithium ore Lepidolite   Metallic Lithium



■ Principle of the function

► Lithium ions transport

► Cathode on the basis of the oxides:

LiCoO2, LixMn2O4, LiNiO2, LiV2O5 etc.

► Anode: graphite

► Electrolyte: liquid, gel or polymer

the most widely used: liquid

lithium-hexafluorophosphate

in solvents (ethylene carbonate

+ dimethyl carbonate etc.)

BEV: lithium-ion battery

147 28



■ Construction solution with liquid electrolyte

► Nominal voltage of one cell = 3.6 V

► Multiples are achieved by serial sorting, i.e.: 7.2; 10.8; 14.4 V ...etc.

► The capacity is then increased by parallel switching

BEV: lithium-ion battery

147 29



■ Evolution of Li-ion batteries

► Initial design - early 20th century proposed by Gilbert Newton Lewis

► The first practically usable battery – 1970s: Li-TiS2 developed by Michael Stanley 

Wittingham

Problem: unacceptable titanium sulfide cost

► Much cheaper LiC6 introduced by Bell’s laboratories AT&T

► First commercially successful type LiCoO2

introduced by Sony in 1991

► Today the most produced types:

type 18650, 18×65 mm (e.g. for Tesla S)

type 20700, 20×70 mm

type 26650, 26×65 mm

► Cathodes vary by applications

Li-NiCoAlO2

Li4Ti5O12 etc.

BEV: lithium-ion battery

157 30



■ Cells assembled into battery packs (1 car needs thousands cells)

► nominal voltage of one cell = 3.6 V

► capacity increased by connecting cells in parallel

► voltage increased by connecting the cells in series

► battery packs also contain: protective casing, insulation against water, 

charging/discharging electronics, cooling system

BEV: lithium-ion battery

157 31



■ The main problems of BEV that still need development:

► Low energy density of batteries

► Flammability of electrolyte and anode of Li-ion batteries

► Cell degradation causing a drop in capacity (limited lifespan of batteries)

► Dependence of battery capacity on temperature

► Slow charging + unusable 100% capacity

► The need for noble metals (especially for cathodes)

► Lack of stable energy supplies from emission-free sources

BEV: further development is still needed

-7 32
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■ Energy density

► Definition: Energy density = the amount of energy stored in a given system 

per unit volume or unit weight

► Units: 1 watt-second per cubic meter [Ws m–3]

1 watt-second per kilogram [Ws kg–1]

BEV: energy density of the batteries

-7 33

1

E …. energy [Joule], [J]

P …. power [Watt], [W]

F …. force [Newton], [N]

d …. distance [meter], [m]

t …. time [second], [s]

EDV …. volume energy density [watt-second per cubic meter], [Ws m–3]

Edw …. weight energy density [watt-second per kilogram], [Ws kg–1]

ρ …. (material) density [kilogram per cubic meter], [kg m–3]

m …. weight [kilogram], [kg]



■ Energy density

► Fuels: the energy density value given by the heat of combustion of the 

fuel

► Batteries: the energy density given by the amount of charge transferred 

between cathode and anode

BEV: energy density of the batteries

-7 34

1

Max. energy density Material density
Max. engine/motor 

efficiency

(Wh kg–1) (Wh dm–3) (kg dm–3) (%)

Diesel 11,836 9,942 0.84 42%

Gasoline (95 oct.) 12,108 8,839 0.73 38%

Li-ion battery 200 530 2.65 82%

LiFePO4 battery 165 335 2.03 82%

Problem: Actual generation of Li-ion batteries have the energy density too low!

Theoretical maximum of the Li-ion cell is 1.700 Wh h–1. …. but it is not reached 

anyway.



■ Energy density – example of comparison (including the engine 
efficiency)

► Let's have 4 cars with the same power.

► The car with a diesel engine has a fuel tank of 50 liters.

► What is the gasoline and Li-ion battery equivalent for the engine to do the 

same work (incl. low efficiency of fossil fuel cars)?

BEV: energy density of the batteries
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1

Fuel/battery 

volume

Fuel/battery 

weight

Effective energy 

used

Total energy in the 

fuel/battery

(dm3) (kg) (kWh) (kWh)

Diesel 50 42 209 497

Gasoline (95 oct.) 62 45 the same 550

Li-ion battery 481 1,274 the same 255

LiFePO4 battery 761 1,545 the same 255



■ Energy density – example of comparison (including the engine 
efficiency)

► Let's have the VW ID.5 car with the usable battery capacity of 77.0 kWh 

(model year 2023).

► How much fossil fuel (including low efficiency of fossil fuel cars) does this 

capacity correspond to?

BEV: energy density of the batteries

167 36

1

77.0 kWh stored in:

Fuel/battery

Volume Weight

(dm3) (kg)

Li-ion battery 145 385

LiFePO4 battery 230 467

Diesel 15 13

Gasoline (95 oct.) 19 14



BEV: flammability of lithium-ion batteries

-7 37

■ Li-ion battery fire can occur:

► due to an internal short circuit (separator damage)

► as a result of a car accident

► due to overheating (failure of temperature management, especially during 

charging)

■ The only effective solution:

► development of batteries without flammable media

► persisting problem: safe substitutes for liquid organic electrolyte have worse 

lithium ion transfer  slower charging, lower capacity

► many researches in progress, e.g.:

Solvent-Anchored non-Flammable Electrolyte (SLAC/Stanford 

University)

Graphene-based lithium-ion batteries

(Nanotech Energy)

…… etc.

2



BEV: flammability of lithium-ion batteries

-7 38

■ Example: Steps of Li-ion battery fire due to overheating:2

► Exothermic decomposition of electrolyte interphase 85 °C

► Formation of a secondary film and its subsequent 

decomposition 110 °C

► Evaporation of electrolyte 140 °C

► Separator melting (between electrodes and electrolyte) 130 – 190 °C

► Short-circuiting of the circuit and spontaneous heating

► Ignition of electrolyte vapors with oxygen released from the 

positive electrode after leaving Li 225 °C

► Graphite electrode ignition 330 °C

► Melting of the aluminum collector 660 °C

Explosion



BEV: Li-ion cell degradation
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■ Cell degradation causing a drop in capacity occurs:

► spontaneously as a result of chemical processes in the cells

► with an increasing number of charge/discharge cycles

lifespan ca. 2,000 cycles for Li-ion and >2,000 cycles for LiFePO4

► with increasing use of maximum charging speed ("turbocharging")

► by exposing the battery to high temperatures

► by storing the vehicle for a long time:

with other than 40-60% charge level

storing at 100% charge or discharged accelerates the degradation

■ The definitive death of the cell occurs:

► due to a deep discharge below the 2.8 V limit

(e.g. when the vehicle is parked for a long time)

► when the battery overheats above the technical limit

3



BEV: Li-ion cell degradation

177 40

■ Charging with a higher voltage slightly increases the initial capacity, 
but leads to rapid degradation: limited by the car's power management

► dangerous charging eliminated by the car power management

► Using fast chargers with a higher current load also has a negative effect

3



BEV: Battery capacity vs. temperature

187 41

■ Low temperature → temporary capacity reduction

► Example: The capacity is 100% at +27°C , but only 50% at -18°C.

■ Too high temperature → lifespan shortening (permanent capacity drop)

4



BEV: Slow charging
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■ Slow charging compared to fossil fuels vehicles

► Charging time depends on battery capacity, voltage and current.

► Problem: The maximum current is limited by the material and cross-section 

of the conductor (cable).

► Standard electric cars use 400 V architecture.

► Only premium models (Porsche Taycan) allow charging at 800 V.

► Battery charging runs with direct current (DC). When alternating current 

(AC) is used a rectifier is activated (it slows charging down)

► Charging current for DC and single-phase AC

► Charging current for 3-phase AC

(where Q is so called reactive power)

5



BEV: Slow charging
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■ Slow charging compared to fossil fuels vehicles

► overview of charging systems in Europe

5

Charger type AC DC

Charging 

power
Voltage Current

Charging 

power
Voltage Current

Wall plug (1-phase) 2,3 kW 230 V 10 A

Not available

Wall plug (1-phase) 3,6 kW 230 V 16 A

Wallbox (3-phase) 7,2 kW 400 V 10 A

Wallbox (3-phase) 11,0 kW 400 V 16 A

Wallbox (3-phase) 22,0 kW 400 V 32 A

Public charger 22,0 kW 400 V 32 A 22,0 kW 400 V 55 A

Public charger 43,0 kW 400 V 62 A 43,0 kW 400 V 108 A

Public charger

Not available

50,0 kW 400 V 125 A

Public charger 120,0 kW 400 V 300 A

Public charger 150,0 kW 400 V 375 A

Public charger 350,0 kW 800 V 438 A



BEV: Slow charging
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5 ■ Example: refueling a 50-liter tank takes 10 minutes, incl. payment

► How would an electric car have to be charged to achieve the same time?

► Conditions: DC charger / 400 V car architecture



BEV: The need for noble metals (espec. Co)

197 45

6 ■ In addition to Li, other metals such as: Ni, Co, Ti, V or Mn necessary

■ Co metallurgy: Pressure Acid Leaching  environmentally harmful

Step 1: Cobalt ore leached with a mixture of mineral acids at 4.5 MPa and 255°C

Step 2: Metals precipitated from the solution using H2S

Step 3: Sulfides converted to sulfates by O2 under under increased p

Step 4: CoSO4 separated from the solution using liquid extraction.



BEV: The need for noble metals (espec. Co)
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6 ■ In the Democratic Republic of the Congo, there are about 2/3 of the 
mineable cobalt reserves.

■ Mining: mainly manual (high share of child labor)

■ Environmental protection: poor

Unicef data 2021: global share of child 

labor 160 million children

Mutanda Mine



BEV: Electricity supply
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7 ■ Stable energy supplies from emission-free sources

► Solar + wind energy: fluctuating electricity production

► Combustion proc.: pre-, post- and oxy-combustion CO2 capture needed

► Nuclear energy: necessary to solve the management of used fuel

permanent storage

recycling

closed fuel cycle

► Necessary development and construction of energy storage facilities

batteries

gravity storage (mechanical)

pumped water power plants

chemical storage (reversible reactions)
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