

Greenhouse Gases Mitigation CO₂ Capture and Utilization

Topic No: 7

- 1. Evolution of road transport
- 2. Distribution of available drives of road vehicles
- 3. Principle of different types of internal combustion engines
- 4. Pollution control for the road vehicles
- 5. Principle of battery electric vehicles
- 6. Lithium ion batteries principle and parameters
- 7. BEV: technical limitations, progress and challenges

Reference(s): -

- Nicolas Joseph Cugnot: Le fardier à vapeur (1770)
 - Weight 2.5 t, the payload 4 t, max. speed 9 kmh⁻¹
 - Saturated steam drive, boiler not equipped with superheater
 - Intended for military purposes but the tricycle evaluated as unstable by the army

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

- The following 100 years (1780 1880) very slow development
 - Basically just improving the steam engine
 - ► James Watt (1736 1819):
 - 1763 improvements of the Newcomen's steam Engine started
 - 1769 patented separate steam condenser = increased machine efficiency
 - by 1800 only ca. 500 engines produced (textiles, metallurgy, mills)
 - 1800 patent expiration \Rightarrow then new manufacturers

The following 100 years (1780 - 1880) very slow development

- ▶ Slow increase of the steam Engine efficiency from 5 to ca. 12 %
- Steam cars expensive and not very practical (scared horses, unsafe riding)
- Restrictions, e.g. 1865 "Red flag act" speed limit: 4mph in the country 2mph in towns + vehicle had to be preceded by a person carrying a red flag

Trevithick: "The puffing devil" (1801)

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

- Technological breakthrough
 - ▶ 1877 Nicolaus Otto patented the gasoline 4-stroke engine
 - 1886 Karl Benz: German patent No. 37435a: gasoline tricycle power: 0,66 kW at 400 rpm; cylinder vol. 954 cm³ Operational speed 11 km h⁻¹; max. speed 16 km h⁻¹

Development of automobile transport

- Pioneer of world motorization Henry Ford
 - First production Model T car built in September 27, 1908 at the Piquette Plant in Detroit - start of mass production of vehicles
 - From 1914 the annual production of Model T reached 300,000 cars.

Reference(s): 7

- Continuous increase after WWII
 - Actual number (2016): 1.32 10⁹ (personal cars + truck + buses)

Commercial Personal

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Topic

7

A G

- Spark ignition engines
 - ► Gasoline (95, 98, or 100 octane) + up to 5% ethanol (annual sum min. 4.1%)
 - Ethanol-rich fuel E85 with ethanol content 70 85% according to the season
 - Compressed Natural Gas (CNG)
 - Liquefied Petroleum Gas (LPG): winter 40% butane / summer 60% butane
- Compression ignition engines
 - Diesel fuel containing up to 7% FAME
 - Mixed diesel fuel containing up to 31% FAME
- Hybrid vehicles
 - MHEV Mild Hybrid Electric Vehicle
 - ► HEV "classic" Hybrid Electric Vehicle
 - PHEV Plug-in Hybrid Electric Vehicle
- Electric vehicles

Reference(s):

Topic

- BEV Battery Electric Vehicle
- FCBEV Fuel Cell Battery Electric Vehicle

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

combustion engine + el. motor

MHEV – Mild Hybrid Electric Vehicle

- the main propulsion unit = an internal combustion engine
- the auxiliary system consists of a starter-generator with a battery
- the starter-generator most often connected to the engine by a pulley (starter + energy recovery when braking subsequently used for acceleration)
- the electric motor power = ca. 12 kW (at 45 V) not intended to drive
- sometimes the el. motor drives the air blower and assists the turbocharger
- HEV "classic" Hybrid electric vehicle
 - electrical assistance during start-up and acceleration + shorter electric drive
 - It does not allow charging from the wall plug.
 - more solutions: possible starting with the combustion Engine, or only electric
- PHEV Plug-in Hybrid Electric Vehicle
 - two full-fledged motors; purely electric driving in the order of tens of km
 - battery charged externally (like BEV)
 - driving with a dead battery not recommended \Rightarrow battery only a ballast load

©Marek.Staf@vscht

Topic

Principle of spark ignition engines

- A mixture of air and gasoline aerosol prepared and subsequently ignited by an electric spark
 - The oldest system with a <u>carburettor</u>: the aerosol created by passing air through a nozzle
 - A more modern system with <u>indirect injection</u>: gasoline injected outside the cylinder space into the intake air
 - The latest <u>direct injection system</u>: gasoline injected directly into the cylinder at the beginning of the compression phase
- Air/fuel ratio
 - Older engines with carburetor used sub stoichiometric air content
 - ► Modern engines use the excess air coefficient $\lambda = 1 \pm 0.1$
- Working cycle
 - Majority of modern cars uses the Otto 4-stroke cycle
 - Old cars (before 1990) also used Otto 2-stroke cycle
 - Especially for hybrid cars the Atkinson cycle is preferred (higher efficiency, but lower power)

Topic

2-stroke spark ign. engines (chainsaws etc.)

12

Reference(s): -

4-stroke spark ign. engines (cars)

Principle of compression ignition engines

- In the first stage, only air is introduced into the cylinder
- After its adiabatic compression, fuel is injected into the cylinder by a highpressure pump
 - ► Temperature of compressed air 700 900 °C
 - Temperature must be higher than flammability limit of the fuel (diesel fuel typically 320 – 380 °C)
- Air/fuel ratio
 - Excess air coefficient $\lambda = 1.3 1.4$ (naturally aspirated engines)
 - Excess air coefficient $\lambda = 1.6 2.0$ (engines with turbochargers)

Note: Naturally aspirated engines offer generally low performance

Turbocharger uses residual pressure of exhaust gas to compress the air:

7

4-stroke compression ign. engines (cars)

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Emissions from internal combustion engines

- 5 different groups of emissions
 - CO₂ cannot be (effectively) captured from exhaust gases
 - \triangleright NO_x, PM, CO, C_xH_y there are efficient methods for their removal

Carbon dioxide

product of complete combustion of hydrocarbon-based fuels.

Carbon content in liquid and gaseous fuels

	Diesel	Gasoline	LPG	CNG	Ethanol	FAME
C content (wt. %)	86,0	85,5	84,0	74,3	52,2	77,0

Pathways leading to a decrease in emissions

to replace high-carbon fuel with low-carbon fuel

to decrease total fuel consumption

by increasing efficiency (technical limits)

Efficiency
$$\eta_{Otto cycle} = 25 - 38\%$$

Efficiency $\eta_{Diesel cycle} = 30 - 42\%$

by hybrid technology implementation

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Topic

- Carbon dioxide emissions depend on fuel consumption
 - Example for the spark ignition engine combusting 95 octane gasoline:

Main methods of reducing emissions

- Primary methods to suppress NO_x , CO, PM and C_xH_y emissions
 - Improvement of fuel mixture preparation (indirect vs. direct injection, "pumpe düse vs. common rail etc.)
 - Improved ignition (longer electrode distance + longer spark time)
 - Exhaust gas recirculation (NO_x suppression)
 - Reduction of tolerances in the combustion part of the engine
 - Lambda combustion control \Rightarrow continuous control of the fuel/air ratio
 - Controlling the movement of the mixture in the cylinder
 - Switching off some cylinders when the engine runs at lower performance
 - Variable Valve Timingthe Start/Stop system etc.
 - Secondary methods

Reference(s):

Topic

- Implementation of catalysts (destruction of CO, C_xH_y and NO_x)
- Implementation of filters (separation of PM)

Spark ignition engines: precise fuel dosing

- replacement of the old carburettor system
- Unlike the older carburettor, it enables λ -regulation.
- \triangleright λ -regulation = precise control of the air/fuel ratio
- \triangleright λ -regulation essential condition for the 3-way catalyst operation

Reference(s): -

Topic

GAG

- The probe detects O₂ in the exhaust gas, the ECU then controls the fuel/air ratio.
- The signal from the common probes is the voltage between the electrodes.
- The signal changes in steps:

Spark ignition engines: 3-way catalyst

- Three-way catalyst: common destruction of C_xH_y , CO and NO_x
 - ► As a rule, a ceramic carrier coated by active component (Pt + Pd + Rh)
 - ► All placed in a metal, internally sprung case
 - Carrier = magnesium-aluminum-silicate ceramic block with an Al₂O₃ surface layer
 - Operating temperature

min.	300°C
optimal	400 – 800 °C
risky	< 1,000 °C
destructive	> 1000 °C

©Marek.Staf@vscht.cz

Reference(s): 9

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Compression ignit. engines: complex system

- The system consists of separated catalysts and particle filter
- More complicated solutions for emissions due to $\lambda > 1$ (always);
- Compared to gasoline engines, NO_x must be reduced using SCR and solid particles must be separated by filtration in a DPF filter;
- SCR principle: reduction by injection of urea solution
 - so-called AUS 32 = 32.5% urea in water with a crystallization point of -11 °C
- Urea solution supplied under the trade name AdBlue
 - AdBlue injected before the exhaust gas catalyst (mixing with flue gas followed by decomposition into NH₃ + CO₂)

eference(s):

Compression ignit. engines: complex system

The system consists of separated catalysts and particle filter

24

Compression ignit. engines: DPF

- DPF separates mainly soot with automatic regeneration each 300-500 km
- Regeneration by heating to approx. 600°C with subsequent burning of soot
- Heating by fuel injection into the cylinders with the exhaust valves open

Reference(s): 10

- Two solutions are currently available
 - System with direct wheel drive (without classic gearbox) often a chassis on a frame (skateboard-like construction)

Similar to a classic car self-supporting body engine with automatic transmission

Topic

Greenhouse Gases Mitigation, CO₂ Capture and Utilization Reference(s): 11, 12 ©Marel

Ø

Metallic lithium ${}^{7}_{3}$ Li

- Lithium is a low-density alkali metal with a melting point of only 180.54 °C.
- It is a highly reactive element that oxidizes even in air. It is stored safely in kerosene.
- Natural occurrence
 - A relatively rare element, contained in rocks especially based on aluminosilicates, but in ores usually less than wt. 5%

Lithium ore Lepidolite

Metallic Lithium

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

- Principle of the function
 - Lithium ions transport
 - Cathode on the basis of the oxides: LiCoO₂, Li_xMn₂O₄, LiNiO₂, LiV₂O₅ etc.
 - Anode: graphite

Reference(s): 14

Electrolyte: liquid, gel or polymer the most widely used: liquid lithium-hexafluorophosphate in solvents (ethylene carbonate + dimethyl carbonate etc.)

- Construction solution with liquid electrolyte
 - Nominal voltage of one cell = 3.6 V
 - Multiples are achieved by serial sorting, i.e.: 7.2; 10.8; 14.4 V ...etc.
 - The capacity is then increased by parallel switching

Ő

- Evolution of Li-ion batteries
 - Initial design early 20th century proposed by Gilbert Newton Lewis
 - The first practically usable battery 1970s: Li-TiS₂ developed by Michael Stanley Wittingham

Problem: unacceptable titanium sulfide cost

- Much cheaper LiC₆ introduced by Bell's laboratories AT&T
- First commercially successful type LiCoO₂ introduced by Sony in 1991
- Today the most produced types:
 - type 18650, 18×65 mm (e.g. for Tesla S)
 - type 20700, 20×70 mm
 - type 26650, 26×65 mm
- Cathodes vary by applications
 - Li-NiCoAlO₂
 - $Li_4Ti_5O_{12}$ etc.

- Cells assembled into battery packs (1 car needs thousands cells)
 - nominal voltage of one cell = 3.6 V
 - capacity increased by connecting cells in parallel
 - voltage increased by connecting the cells in series
 - battery packs also contain: protective casing, insulation against water, charging/discharging electronics, cooling system

Reference(s): 15

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

BEV: energy density of the batteries

Energy density
$$ED_V = ED_W \times \rho = \frac{E \times \rho}{m} \xrightarrow{\text{therefore}} [ED_V] = [W \ s \ m^{-3}]$$

 $P = \frac{F \times d}{t} = \frac{E}{t} \xrightarrow{\text{therefore}} [J] = [W \ s]$

Definition: Energy density = the amount of energy stored in a given system per unit volume or unit weight

1 watt-second per cubic meter [Ws m⁻³]

1 watt-second per kilogram [Ws kg⁻¹]

E	energy [Joule], [J]
Ρ	power [Watt], [W]
F	force [Newton], [N]
d	distance [meter], [m]
t	time [second], [s]
ED_V	volume energy density [watt-second per cubic meter], [Ws m ⁻³]
Ed_{w}	weight energy density [watt-second per kilogram], [Ws kg ⁻¹]
ρ	(material) density [kilogram per cubic meter], [kg m ⁻³]
m	weight [kilogram], [kg]

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Topic

BEV: energy density of the batteries

Energy density

- Fuels: the energy density value given by the heat of combustion of the fuel
- Batteries: the energy density given by the amount of charge transferred between cathode and anode

	Max. energy density		Material density	Max. engine/motor efficiency	
	$(Wh kg^{-1})$	(Wh dm ⁻³)	(kg dm ⁻³)	(%)	
Diesel	11,836	9,942	0.84	42%	
Gasoline (95 oct.)	12,108	8,839	0.73	38%	
Li-ion battery	200	530	2.65	82%	
LiFePO ₄ battery	165	335	2.03	82%	

Problem: Actual generation of Li-ion batteries have the energy density too low!

Theoretical maximum of the Li-ion cell is 1.700 Wh h^{-1} but it is not reached anyway.

Topic

BEV: energy density of the batteries

Energy density – example of comparison (including the engine efficiency)

- Let's have 4 cars with the same power.
- ▶ The car with a diesel engine has a fuel tank of 50 liters.
- What is the gasoline and Li-ion battery equivalent for the engine to do the same work (incl. low efficiency of fossil fuel cars)?

	Fuel/battery volume	Fuel/battery weight	Effective energy used	Total energy in the fuel/battery
	(dm ³)	(kg)	(kWh)	(kWh)
Diesel	50	42	209	497
Gasoline (95 oct.)	62	45	the same	550
Li-ion battery	481	1,274	the same	255
LiFePO ₄ battery	761	1,545	the same	255

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

- Energy density example of comparison (including the engine efficiency)
 - Let's have the VW ID.5 car with the usable battery capacity of 77.0 kWh (model year 2023).
- How much fossil fuel (including low efficiency of fossil fuel cars) does this capacity correspond to?

77.0 kWh stored in:			
	Fuel/battery		
	Volume	Weight	
	(dm ³)	(kg)	
Li-ion battery	145	385	
LiFePO ₄ battery	230	467	
Diesel	15	13	
Gasoline (95 oct.)	19	14	

Greenhouse Gases Mitigation, CO₂ Capture and Utilization
BEV: flammability of lithium-ion batteries

- Li-ion battery fire can occur:
 - due to an internal short circuit (separator damage)
 - as a result of a car accident
 - due to overheating (failure of temperature management, especially during charging)
- The only effective solution:
 - development of batteries without flammable media
 - persisting problem: safe substitutes for liquid organic electrolyte have worse lithium ion transfer ⇒ slower charging, lower capacity
 - many researches in progress, e.g.:

Solvent-Anchored non-Flammable Electrolyte (SLAC/Stanford University)

Graphene-based lithium-ion batteries

(Nanotech Energy)

..... etc.

Reference(s): -

©Marek.Staf@vscht.cz

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Example: Steps of Li-ion battery fire due to overheating:

	Exothermic decomposition of electrolyte interphase	85 °C					
	Formation of a secondary film and its subsequent decomposition	110 °C					
	Evaporation of electrolyte	140 °C					
	Separator melting (between electrodes and electrolyte)	130 – 190 °C					
	Short-circuiting of the circuit and spontaneous heating						
	Ignition of electrolyte vapors with oxygen released from the positive electrode after leaving Li	225 °C					
	Graphite electrode ignition	330 °C					
	Melting of the aluminum collector	660 °C					
Explosion							

Reference(s): -

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

©Marek.Staf@vscht.cz

- Cell degradation causing a drop in capacity occurs:
- spontaneously as a result of chemical processes in the cells
- with an increasing number of charge/discharge cycles
 - lifespan ca. 2,000 cycles for Li-ion and >2,000 cycles for LiFePO₄
- with increasing use of maximum charging speed ("turbocharging")
- by exposing the battery to high temperatures
- by storing the vehicle for a long time: with other than 40-60% charge level storing at 100% charge or discharged accelerates the degradation
- The definitive death of the cell occurs:

Topic

Reference(s): -

- due to a deep discharge below the 2.8 V limit (e.g. when the vehicle is parked for a long time)
- when the battery overheats above the technical limit

©Marek.Staf@vscht

bide

- Charging with a higher voltage slightly increases the initial capacity, but leads to rapid degradation: limited by the car's power management
 - dangerous charging eliminated by the car power management
 - Using fast chargers with a higher current load also has a negative effect

Topic

BEV: Battery capacity vs. temperature Low temperature → temporary capacity reduction

Example: The capacity is 100% at +27°C, but only 50% at -18°C.

Too high temperature \rightarrow lifespan shortening (permanent capacity drop)

- Slow charging compared to fossil fuels vehicles
 - Charging time depends on battery capacity, voltage and current.
 - Problem: The maximum current is limited by the material and cross-section of the conductor (cable).
 - Standard electric cars use <u>400 V</u> architecture.
 - Only premium models (Porsche Taycan) allow charging at <u>800 V</u>.
 - Battery charging runs with <u>direct current (DC)</u>. When <u>alternating current</u> (AC) is used a rectifier is activated (it slows charging down)
 - Charging current for DC and single-phase AC

$$I[A] = \frac{P[W]}{U[V]}$$

 Charging current for 3-phase AC (where Q is so called reactive power)

$$I = \frac{\sqrt{P^2 + Q^2}}{\sqrt{3} \times U}$$

©Marek.Staf@vscht.

eference(s):

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Slide 42

Slow charging compared to fossil fuels vehicles

overview of charging systems in Europe

Charger type	AC			DC			
	Charging power	Voltage	Current	Charging power	Voltage	Current	
Wall plug (1-phase)	2,3 kW	230 V	10 A				
Wall plug (1-phase)	3,6 kW	230 V	16 A				
Wallbox (3-phase)	7,2 kW	400 V	10 A	Not available			
Wallbox (3-phase)	11,0 kW	400 V	16 A				
Wallbox (3-phase)	22,0 kW	400 V	32 A				
Public charger	22,0 kW	400 V	32 A	22,0 kW	400 V	55 A	
Public charger	43,0 kW	400 V	62 A	43,0 kW	400 V	108 A	
Public charger	Not available			50,0 kW	400 V	125 A	
Public charger				120,0 kW	400 V	300 A	
Public charger				150,0 kW	400 V	375 A	
Public charger				350,0 kW	800 V	438 A	

Topic

7

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

- Example: refueling a 50-liter tank takes 10 minutes, incl. payment
- How would an electric car have to be charged to achieve the same time?
- Conditions: DC charger / 400 V car architecture

©Marek.Staf@vscht.cz

Topic

7

BEV: The need for noble metals (espec. Co)

- In addition to Li, other metals such as: Ni, <u>Co</u>, Ti, V or Mn necessary
- Co metallurgy: Pressure Acid Leaching \Rightarrow **environmentally harmful**
- Step 1: Cobalt ore leached with a mixture of mineral acids at 4.5 MPa and 255°C
- Step 2: Metals precipitated from the solution using H_2S
- Step 3: Sulfides converted to sulfates by O_2 under under increased p
- Step 4: CoSO₄ separated from the solution using liquid extraction.

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

©Marek.Staf@vscht.cz

BEV: The need for noble metals (espec. Co)

- In the Democratic Republic of the Congo, there are about 2/3 of the mineable cobalt reserves.
- Mining: mainly manual (high share of child labor)
- Environmental protection: poor

Mutanda Mine

Reference(s): 20

©Marek.Staf@vscht.cz

Unicef data 2021: global share of child labor 160 million children

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Slide 46

- Stable energy supplies from emission-free sources
- Solar + wind energy: fluctuating electricity production
- Combustion proc.: pre-, post- and oxy-combustion CO₂ capture needed
- ► Nuclear energy:
- necessary to solve the management of used fuel permanent storage recycling closed fuel cycle
- Necessary development and construction of energy storage facilities
 - → batteries
 - gravity storage (mechanical)
 - pumped water power plants
 - chemical storage (reversible reactions)

Reference(s): -

- 1. https://www.youtube.com/watch?v=ZC1Fb2la5l0
- 2. https://www.elektrina.cz/james-watt-parni-stroj
- 3. https://www.telegraph.co.uk/news/science/8367976/James-Watt-Britains-head-of-steam.html
- 4. https://www.facebook.com/MarkDaleArtist/posts/puffing-devil-1801-my-latest-watercolourillustration-celebrates-the-remarkable-/1288004354922961/
- 5. https://www.flickr.com/photos/theadventurouseye/29309904104
- 6. http://veteran.auto.cz/clanek/321/benz-patent-motorwagen-1885-1886-automobilu-je-125-let
- 7. https://www.i60.cz/clanek/detail/4726/henry-ford-delnik-ktery-vyrabi-auta-musi-mit-penize-aby-si-ho-mohl-koupit?lang=2
- 8. https://www.statista.com/statistics/281134/number-of-vehicles-in-use-worldwide/
- 9. http://www.fae.es
- 10. www.motoringassist.com
- 11. http://d2ojs0xoob7fg0.cloudfront.net/evtv-word-press/wpcontent/uploads/2014/07/Tesla_Motors_Model_S_base.jpg

- 12. https://auto.idnes.cz/foto.aspx?r=auto_testy&c=A130506_143517_auto_testy_fdv&foto=FDV4 b12ef__DLS8134.jpg
- **13**. www.sberatelmineralu.cz, Theodore W. Gray
- 14. http://oze.tzb-info.cz/akumulace-elektriny/13612-lithiove-akumulatory
- 15. https://www.emobility-engineering.com/cell-to-pack-batteries/
- 16. https://podbabaoperak.cz/vuz/volkswagen-id-5/
- 17. Bandhauer T., M., Garimella S., Fuller T., F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158 (3), R1-R25.
- 18. Leng F., Tan C., M., Pecht M. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Scientific Reports 2015, 5.
- **19**. https://investingnews.com/where-is-cobalt-mined/#toggle-gdpr
- 20. https://oenergetice.cz/akumulace-energie/stane-se-honba-za-kobaltem-baterie-zlatouhoreckou-21-stoleti

