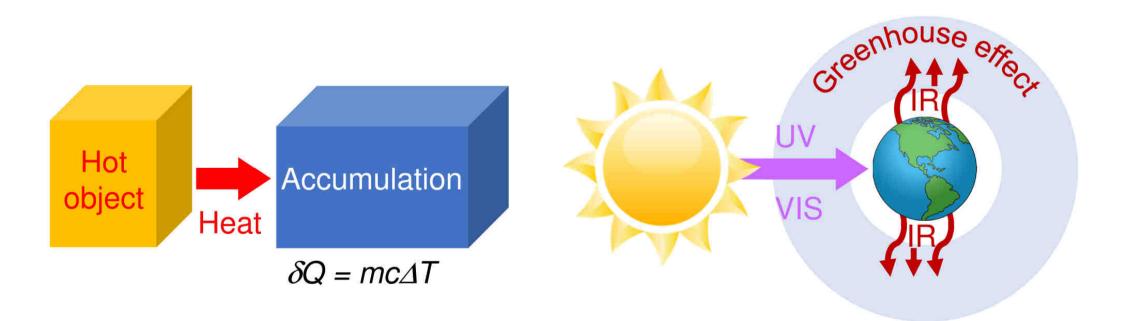
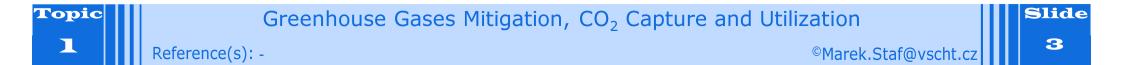


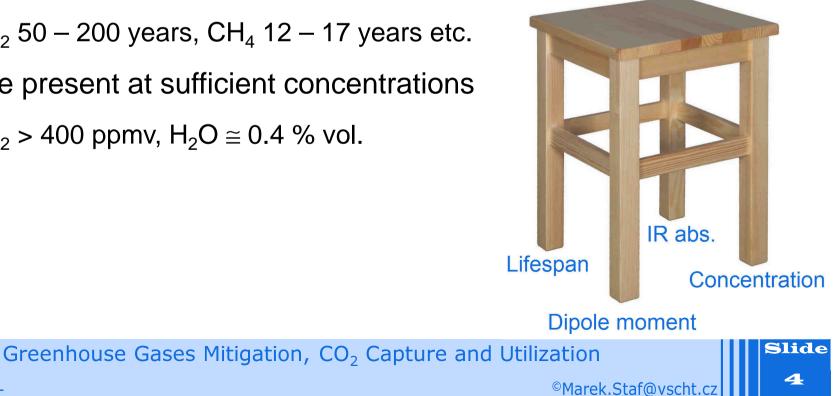
Greenhouse Gases Nitigation CO₂ Capture and Utilization

Topic No: 1




- 1. Mechanism of the greenhouse effect
- 2. Overview of greenhouse gases and their groups
- 3. Physico-chemical properties of greenhouse gases
- 4. Energy balance in the atmosphere, radiative forcing and global warming potential
- 5. Climate theory
- 6. Overview of economic sectors contributing to GHG emissions

- The greenhouse effect is not simply the accumulation of heat.
- Principle: The Earth absorbs UV and VIS and emits IR, but specific gases retain it in the atmosphere.
- Gases capable of this process = greenhouse gases (GHGs).



- GHG must absorb radiation in IR part of spectrum.
- Molecules of GHG must change their dipole moment due to IR absorption
 - Symmetric di-atomic molecules (H_2, N_2, O_2) do not change their dipole moment \Rightarrow IR inactive;
 - \blacktriangleright Molecules with different partial charges on the atoms (CO, CO₂, N₂O...) change the dipole moment \Rightarrow IR active.
- GHG molecules must have sufficient lifetime in the atmosphere.
 - ▶ e.g. $CO_2 50 200$ years, $CH_4 12 17$ years etc.
- GHG must be present at sufficient concentrations
 - ▶ e.g. $CO_2 > 400$ ppmv, $H_2O \cong 0.4$ % vol.

Reference(s): -

Ø

Hundreds of compounds ... the main are:

- H₂O (vapor)
- **CO**₂
- C_xH_y (especially CH₄)
- N₂O

 O_3

Topic

- F-gases a CIF-gases:
 - CFCs (chlorofluorocarbons)
 - HFCs (hydrofluorocarbons)
 - PFCs (perfluorocarbons)
 - (sulfur fluoride)

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

 \blacktriangleright SF₆

What is their origin:

- H₂O (vapor)
- **CO**₂
- C_xH_y (especially CH₄)
- N₂O
- F-gases a CIF-gases:

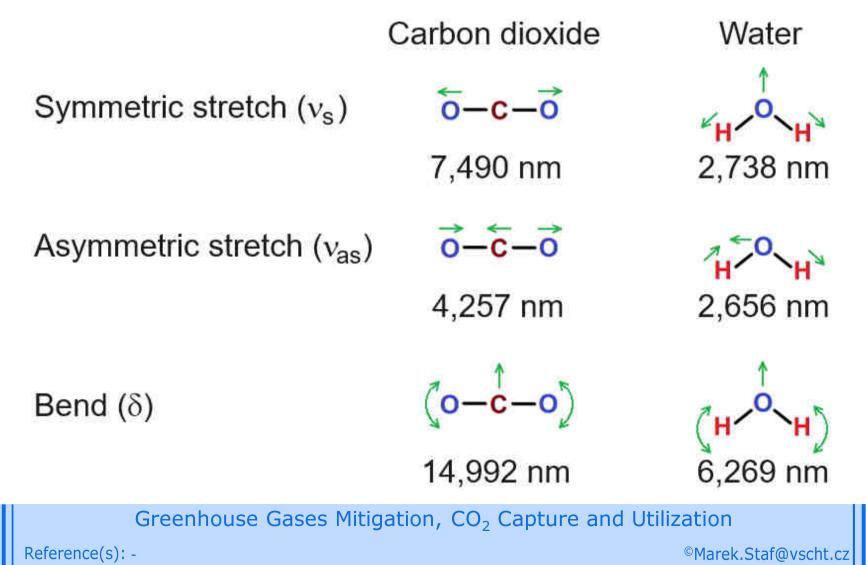
Reference(s): -

- CFCs (chlorofluorocarbons)
- HFCs (hydrofluorocarbons)
- PFCs (perfluorocarbons)
- **SF**₆ (sulfur fluoride)

NATURAL	
NATURAL	ANTHROPOGENIC
NATURAL	ANTHROPOGENIC
NATURAL	ANTHROPOGENIC

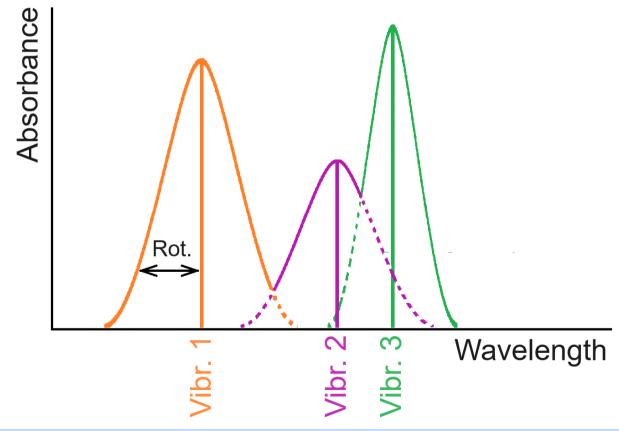
	ANTHROPOGENIC
	ANTHROPOGENIC
	ANTHROPOGENIC
	ANTHROPOGENIC
NATURAL	ANTHROPOGENIC

 O_3


Greenhouse Gases Mitigation, CO₂ Capture and Utilization

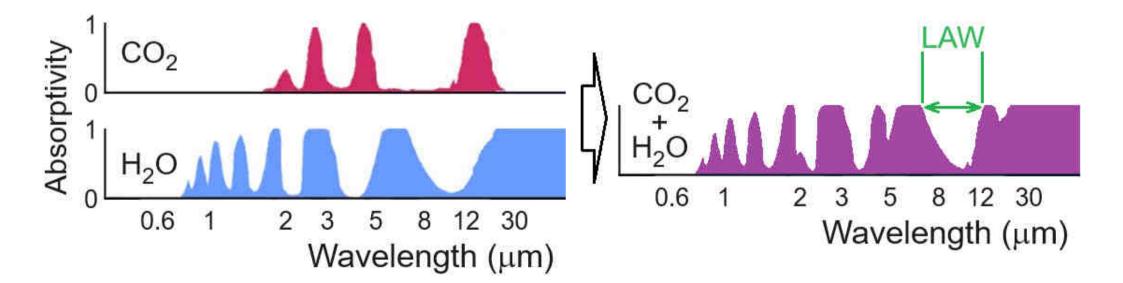
6

- Absorption of light induces molecular vibrations.
- Quantum transition during IR absorption = values of molecular vibrations
 - Each molecular vibration has its specific wavelength value



Slide

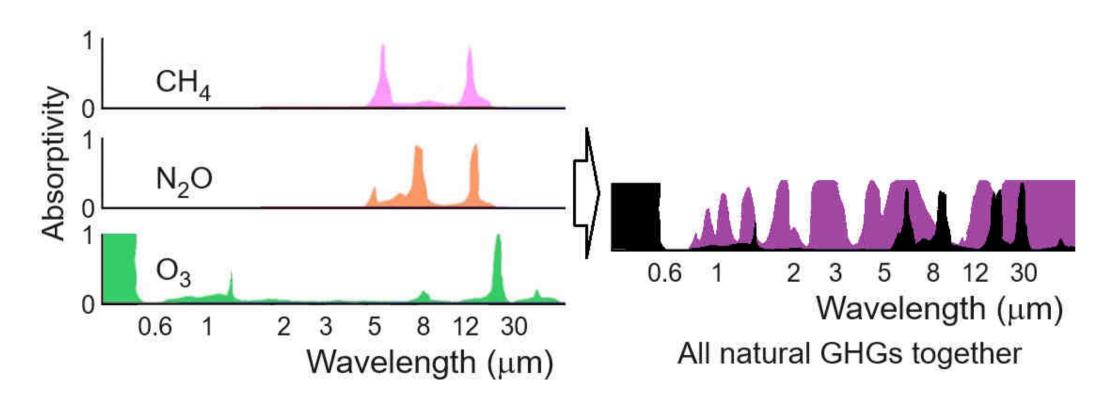
- Absorption of light induces molecular vibrations.
- Quantum transition during IR absorption = values of molecular vibrations
 - Each molecular vibration has its specific wavelength value
 - But 1 molecular vibration induces high number of various rotation levels extension of absorption belt width continuous spectrum


Greenhouse Gases Mitigation, CO₂ Capture and Utilization

8

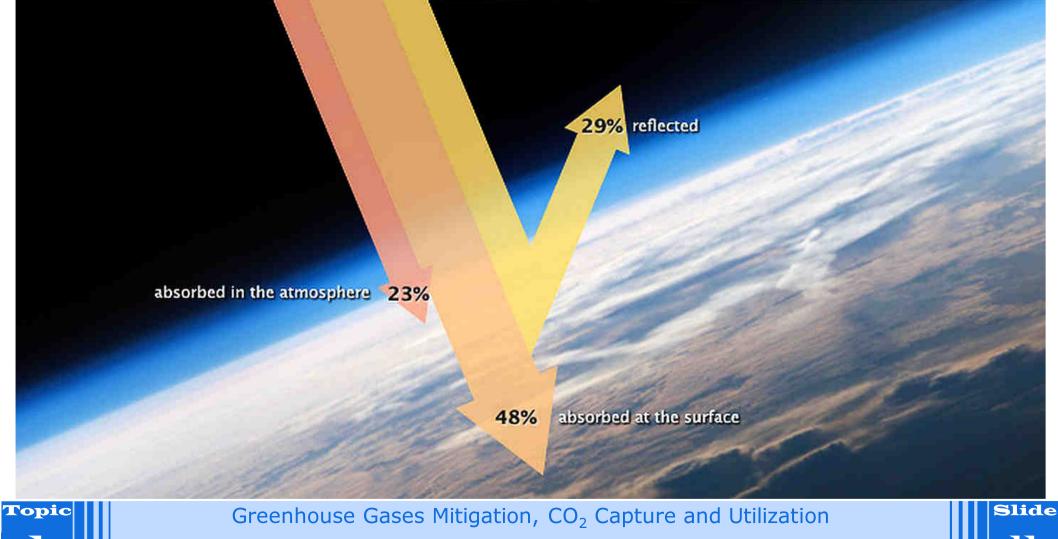
Topic

- CO₂ and H₂O the most concentrated GHGs in the atmosphere
 - \blacktriangleright e.g. CO₂ concentration more than 200 times higher than CH₄
- Cooling of the atmosphere strongly limited by the $CO_2 + H_2O$ absorption bands.
- Where neither CO_2 nor H_2O absorbs, the Earth well radiates IR into space.



- YES: among natural GHGs, e.g. N₂O shows maximum within the LAW.
- Especially solely anthropogenic CFC_s, HFC_s, PFC_s absorb inside the LAW.

A compound absorbing within the LAW is more dangerous than CO_2 and H_2O .

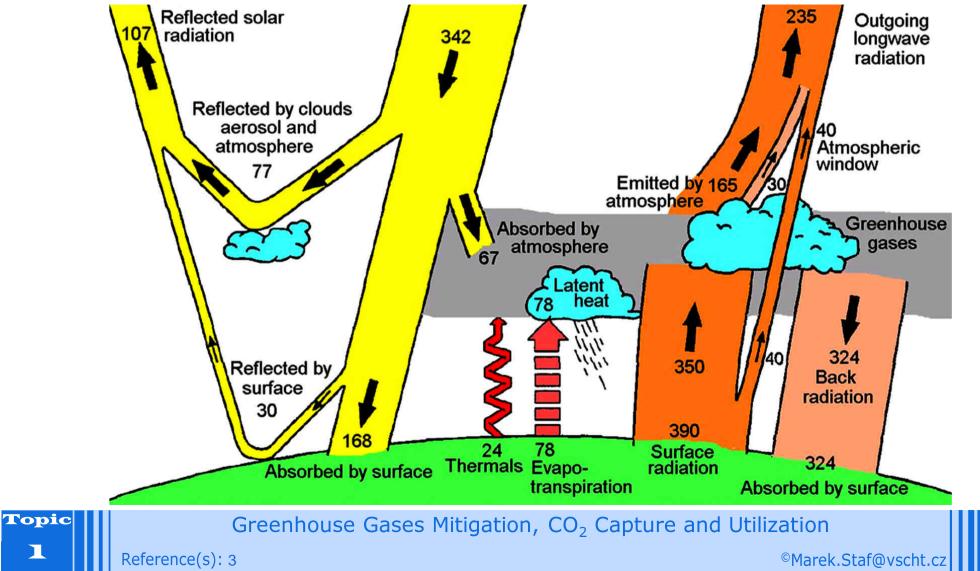

Energy balance of the atmosphere

Balance of incoming solar radiation (UV + VIS)

Reference(s): 2

- ► Total incoming energy flux \cong 340 W m⁻² (defined in tropopause)
- > 29% reflected (98.6 W m⁻²), 23% (78.2 W m⁻²) absorbed in the atmosphere

©Marek.Staf@vscht.cz


Slide

12

The overall energy balance of the Earth

 \mathbf{T}

- The atmospheric window shown at 38% proportion of clear sky
- \blacktriangleright 30 W m⁻² = radiative energy of clouds in longwave area

- There is the equilibrium between UV and visible radiation absorbed by the planet and reflection of IR radiation back to the space.
- Due to absorption of IR radiation, GHG gases change this ratio \Rightarrow accumulation of energy.
 - Since the beginning of the industrial era: Of all the investigated factors, only the concentration of GHGs changed along with the rise in temperature.

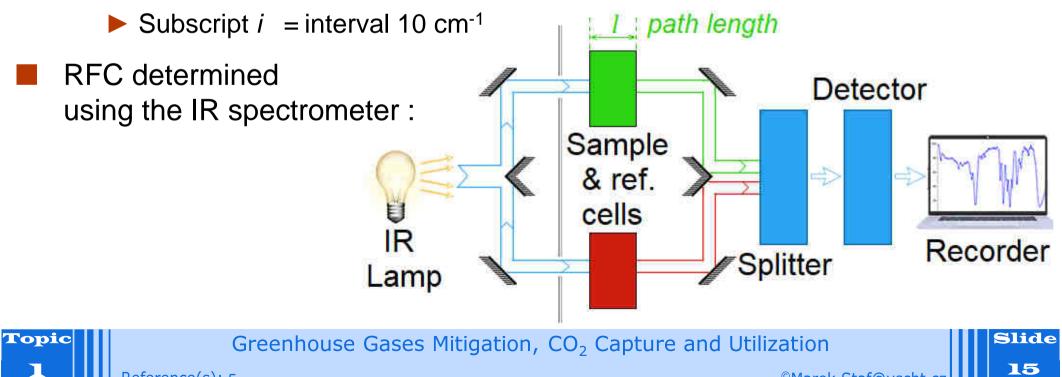
- Several possible parameters, which the most widespread are:
 - Radiative Forcing Capacity (RFC)
 - Global Warming Potential (GWP)
- RFC = the amount of energy per unit area per unit time, absorbed by greenhouse gases, which would otherwise be radiated into space
 - Do not confuse with "Radiative Forcing" = difference between the solar energy absorbed by the Earth and the energy radiated back to outer space.
- GWP is a relative measure of how much heat is retained in the atmosphere by a gas;
 - GWP compares the amount of heat, retained by the certain amount of the particular gas, relative to the same amount of the reference gas - CO₂
 - GWP is a dimensionless factor

Reference(s): -

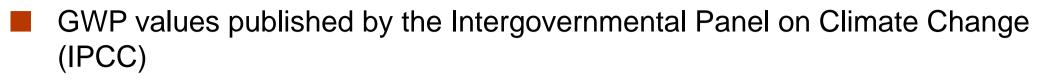
• GWP is related to CO_2 , thus $GWP(CO_2) = 1$

14

[©]Marek.Staf@vscht.cz


RFC expressed by the formula (Beer's law) :

► n


Reference(s): 5

$$RF = \sum_{n=1}^{100} \frac{Abs_i \cdot F_i}{l \cdot n}$$

- Abs_i = integrated infrared absorbance in ith interval
- F_i = radiative forcing in ith interval
 - = path length of the IR measuring cell (cm)
 - = number density of GHG molecules (cm⁻³)

- GWP changed several times between 1996 and 2001.
- In 2001, the exact formula published in the third IPCC report:

$$GWP(x) = \frac{\int_{0}^{TH} a_x \cdot [x(t)]dt}{\int_{0}^{TH} a_r \cdot [r(t)]dt}$$

- ► TH
 - = time horizon, for the calculation (20, 100 or 500 years)
 - a_x = radiative efficiency for unit increase of atmospheric abundance of the selected substance (W m⁻² kg⁻¹)
- [x(t)] = time-dependent decay of the substance (decrease of its abundance from its release in the time t = 0 until t = TH)
- Denominator of the fraction includes the same variables for the reference gas.

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Topic

- GWP depends on the following factors:
 - The rate of absorption of IR radiation by the substance;
 - Position of wavelengths, absorbed by the substance, in the solar spectrum;
 - Lifetime of the substance in the atmosphere.
 - GWP calculation meets problems:
 - Radiative efficiencies a_x , a_r not constant within the whole-time horizon
 - For the majority of gases IR absorbance increases linearly with their abundance in the atmosphere
 - Several important GHGs show non-linear dependence, e.g. <u>CO</u>, CH₄, N₂O
 - Increase of CO₂ concentrations has lower impact on overall IR absorption (saturation of corresponding wavelengths) TOO HIGH CONCENTRATION
 - Calculation for H₂O almost impossible: Unequal H₂O distribution in troposphere (average ca. 0.4 % vol., but up to 1.8 % vol. near the sea level.)

17

Topic

GHG emitted by different economical sectors

- Statistical values given by the National Greenhouse Gas Inventory
- Based on international agreement United Nations Framework Convention on Climate Change (UNFCCC)
- Mandatory IPCC methodology (Guidelines for National Greenhouse Gas Inventories etc.)
- UNFCCC parties collect data from 5 sectors:
 - Energy
 - Industrial processes
 - Agriculture
 - Land-Use, Land-Use Change and Forestry (LULUCF)
 - Waste

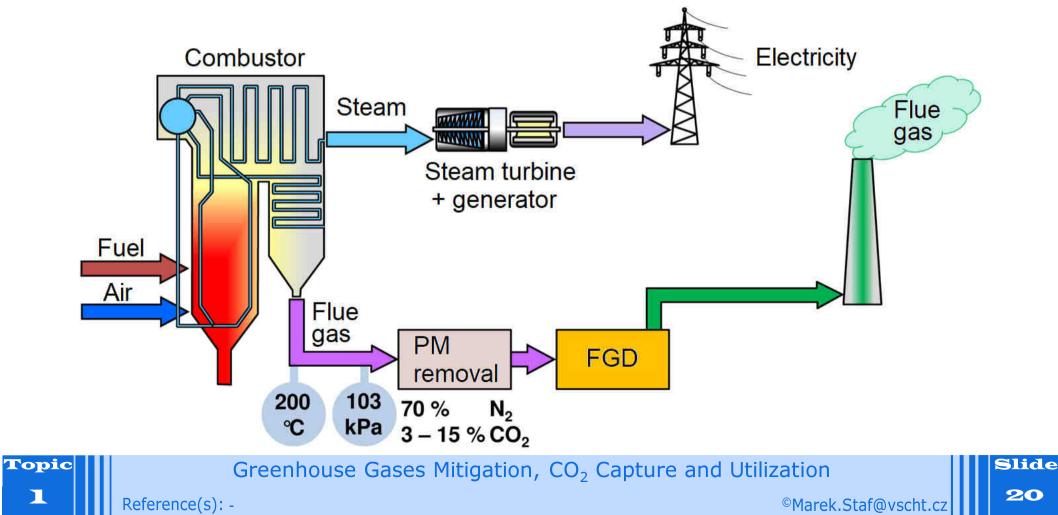
Reference(s): -

Topic

- The most significant category
- In central Europe > 85 % of the overall emissions of GHGs (mostly CO_2)
- Combustion processes (coal, biomass, petroleum, natural gas)
- Processes joined with mining, conversion and manufacturing of fuels and energy (refineries, fugitive emissions of CH₄ from coal mining etc.)
- Emissions from local transport and other mobile sources (NOT international and air transport)
- Part of the fuel consumptions reported in other categories, or not taken into account:
 - non-energetic utilization of fuels for production of lubricants, asphalt etc.
 - coke as reducing agent for Fe production
 - Fuels as raw materials in chemical production, e.g. of NH₃

Reference(s): -

Greenhouse Gases Mitigation, CO₂ Capture and Utilization


19

 \mathbf{T}

- Coal/biomass-fired power station
- Huge flue gas flow e.g. 200 MW unit produces:
 - 1.0 1.2 10⁶ m³ h⁻¹ Lignite:
 - Heavy fuel oil: 0.5 0.6 10⁶ m³ h⁻¹

- Local transport vehicles
 - According to the National Greenhouse Gas Inventory within ENERGY sect.

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

In 2016: 2016: 1,32 10⁹ (personal cars + truck + buses)

Ford model T (1908)

Topic

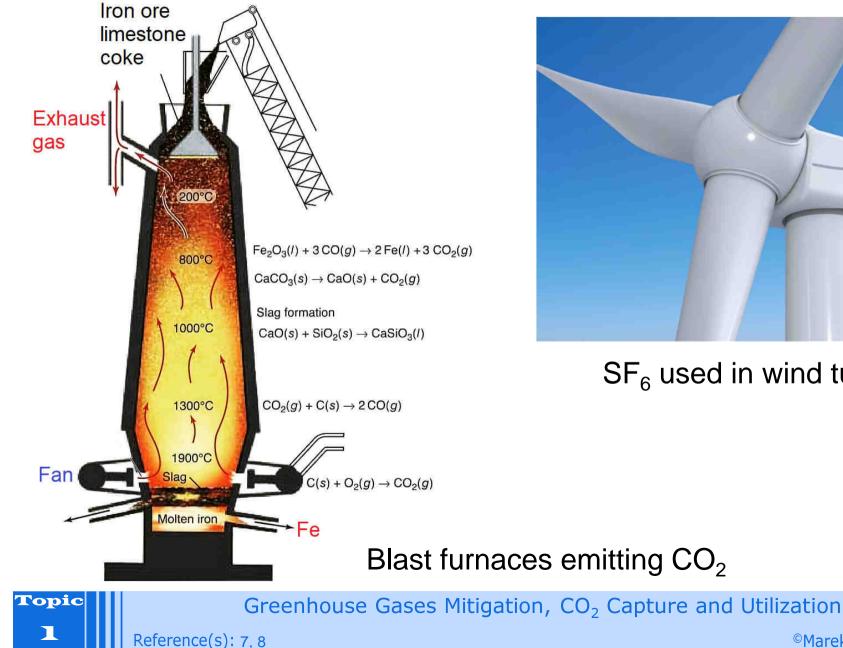
Л

Reference(s): 6

©Marek.Staf@vscht.cz

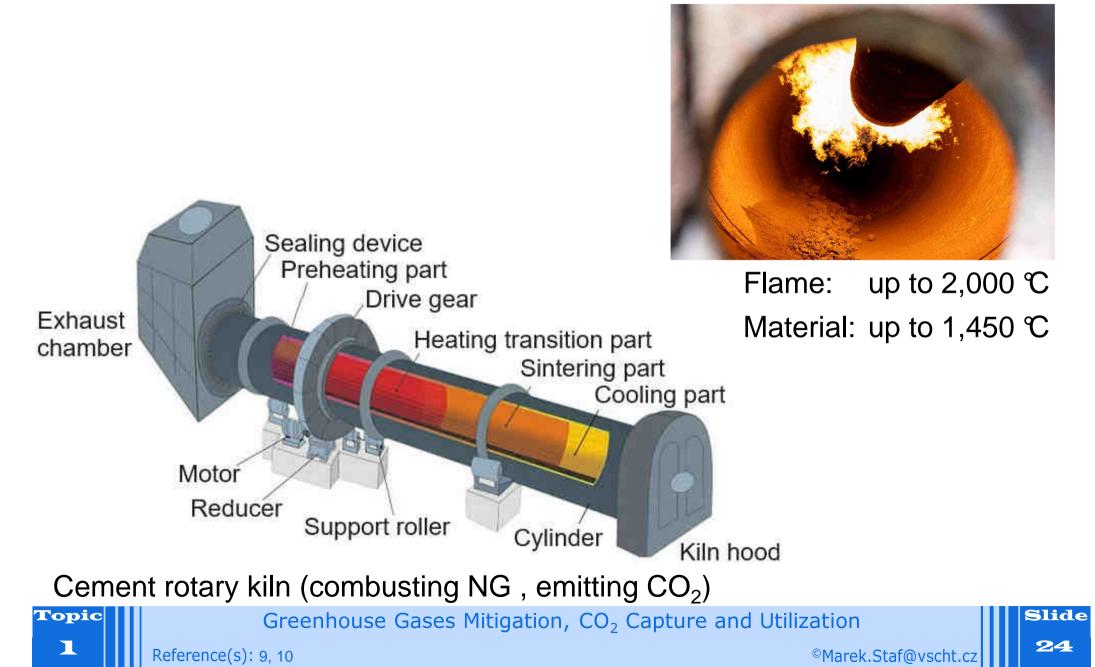
Slide 21

- Metallurgical and chemical processes
 - CO₂ from application of coke for reduction of iron ores to Fe
 - N₂O from production of HNO₃
 - \triangleright CO₂ from production of ammonia (Haber-Bosch process) etc.
 - Processes of decomposition of carbonate minerals:
 - \triangleright CO₂ from production of cement and lime
 - CO₂ from manufacture of glass and ceramics
 - CO₂ from limestone flue gas desulfurization (FGD)
- Application of F-gases:

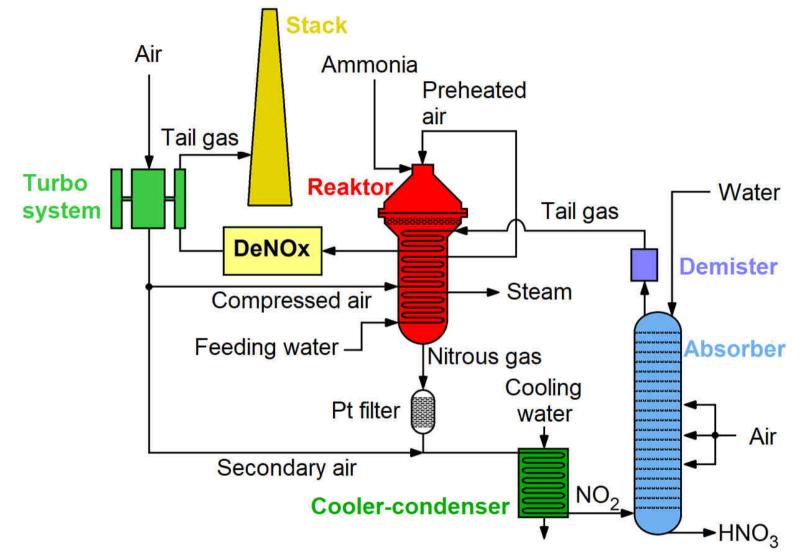

Reference(s): -

- ► HFC and PFC and (particularly in cooling and chilling processes).
- \blacktriangleright SF₆ from high voltage circuits (insulating gas)
- SF₆ from inert protective atmospheres (AI, Mg metallurgy)

Examples of technologies emitting GHGs:


SF₆ used in wind turbines

Slide 23


Examples of technologies emitting GHGs:

Examples of technologies emitting GHGs:

Nitric acid production plant (combusting NH_3 , emitting N_2O)

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Reference(s): -

Topic

[©]Marek.Staf@vscht.cz

Slide 25

Slide

26

- In central Europe mostly emissions of CH₄ and N₂O
- Breeding of animals (anaerobic decomposition of animal manure and CH₄ from enteric fermentation = digestion of vegetal aliment
 - especially breeding of bovine animals
 - CH₄ emissions ca. 65 100 mil. t/year
 - less from swine breeding
- Rice cultivation (170 mil. t/year):
 - \triangleright CH₄ emissions ca. 170 mil. t/year
- N₂O emissions from bacterial denitrification in soil

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Topic

Land-Use, Land-Use Change and Forestry

Emissions of CO₂

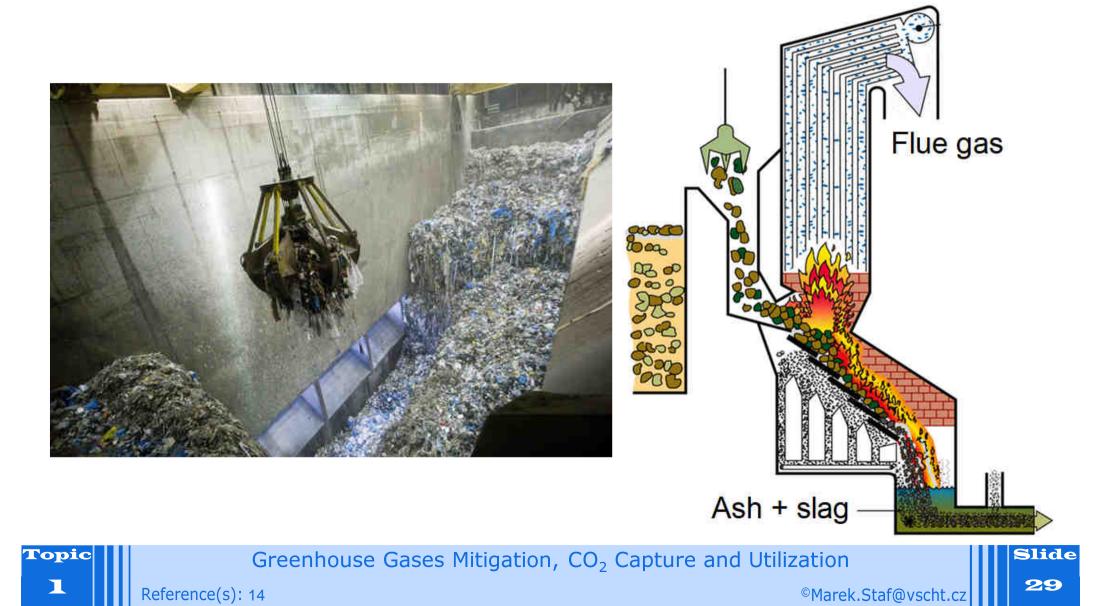
- Inventory based on the analysis of total quantity of wood in forests and its annual changes
- For example in the Czech Republic this sector showed higher CO₂ capture than it emitted
 - negative CO₂ balance till 2018 diminished overall emissions from other sectors
 - ▶ at present forests damaged due to dry seasons \Rightarrow CO₂ emissions

27

Topic

- In central Europe mostly emissions of CH_4 , CO_2 , N_2O ;
- Treatment of municipal and industrial wastewater (CH_4 , N_2O):
 - reported emissions of CH₄ reduced by collected and energetically exploited biogas
- Municipal waste dumps (CH_4) landfills:
 - reported emissions of CH₄ reduced by collected and energetically exploited biogas
 - > 2 methods for evaluation of CH_4 emissions:

 \rightarrow carbon compounds converted to CH₄ within the year of deposition


mathematic model of slower, gradual decomposition

28

- Waste incinerators emissions of CO₂
 - example: waste-to-energy plant



- National Inventory Report complete data for each country
- Administrator: United Nations Framework Convention on Climate Change (UNFCCC)
- Link:

Reference(s):

- https://unfccc.int/ghg-inventories-annex-i-parties/2010 2021, 2022 etc.
- Complete reports sorted by years and in alphabetic order:

Greenhouse Gases Mitigation, CO₂ Capture and Utilization

Slide

©Marek.Staf@vscht.cz

- 1. https://ossarchive.adm.ntu.edu.sg/2016-17/cm8001-group-30/index.html_p=103.html
- 2. http://earthobservatory.nasa.gov/Features/EnergyBalance/page4.php
- 3. https://climate-woodlands.extension.org/radiative-forcing/
- 4. Kiehl and Trenberth, 1997
- 5. https://www.priyamstudycentre.com/2022/12/infrared-spectroscopy-ir-spectrophotometer.html
- 6. https://g.cz/galerie/dedecek-automobil-slavi/?back=/budvar-fordt/&img=2
- 7. https://www.metallics.org/pig-iron-bf.html
- 8. https://newatlas.com/energy/mingyang-myse-18x-28x/
- 9. https://www.cementplantequipment.com/products/rotary-kiln/
- 10. https://www.flukeprocessinstruments.com/en-us/service-and-support/knowledgecenter/infrared-technology/temperature-monitoring-rotary-kiln-shell
- 11. https://www.ochranazvirat.cz/2020/04/14/chov-skotu/
- 12. https://farm-cs.desigusxpro.com/posadka/ogorod/zlaki/ris/gde-i-kak-rastet.html

31

- 13. https://www.drevoastavby.cz/vse-o-drevostavbach/jak-na-drevostavbu/na-co-si-dat-pozor/5333-ohrozuje-kurovec-i-drevostavby
- 14. https://www.nazeleno.cz/energie/energetika/spalovani-odpadu-kolik-vyrobime-tepla-aelektriny.aspx

