

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education



# 

# ATMOSPHERIC CHEMISTRY

#### **Lecture No.: 6**

Marek Staf, MSc., Ph.D., Department of gaseous and solid fuels and air protection Slide No. 1

#### **Organisation of study**

| Lecturer:         | Marek Staf, MSc., Ph.D., phone: +420 220 444 458             |  |  |  |  |  |  |  |
|-------------------|--------------------------------------------------------------|--|--|--|--|--|--|--|
|                   | e-mail: <u>marek.staf@vscht.cz,</u>                          |  |  |  |  |  |  |  |
|                   | web: <u>http://web.vscht.cz/~stafm/</u>                      |  |  |  |  |  |  |  |
|                   | building A, Dept. 216, door No.162                           |  |  |  |  |  |  |  |
|                   | e-learning:                                                  |  |  |  |  |  |  |  |
|                   | https://e-learning.vscht.cz/course/view.php?id=106           |  |  |  |  |  |  |  |
| Scale of subject: | winter semester                                              |  |  |  |  |  |  |  |
|                   | 14 lectures, 14 weeks, 2 hours/week                          |  |  |  |  |  |  |  |
| Classification:   | Exam - written + oral form (depending on result of the test) |  |  |  |  |  |  |  |

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work. If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

Uveřejněné materiály jsou určeny studentům Vysoké školy chemicko-technologické v Praze jako studijní materiál. Některá textová i obrazová data v nich obsažená jsou převzata z veřejných zdrojů. V případě nedostatečných citací nebylo cílem autora/ů záměrně poškodit event. autora/y původního díla. S eventuálními výhradami se prosím obracejte na autora/y konkrétního výukového materiálu, aby bylo možné zjednat nápravu.

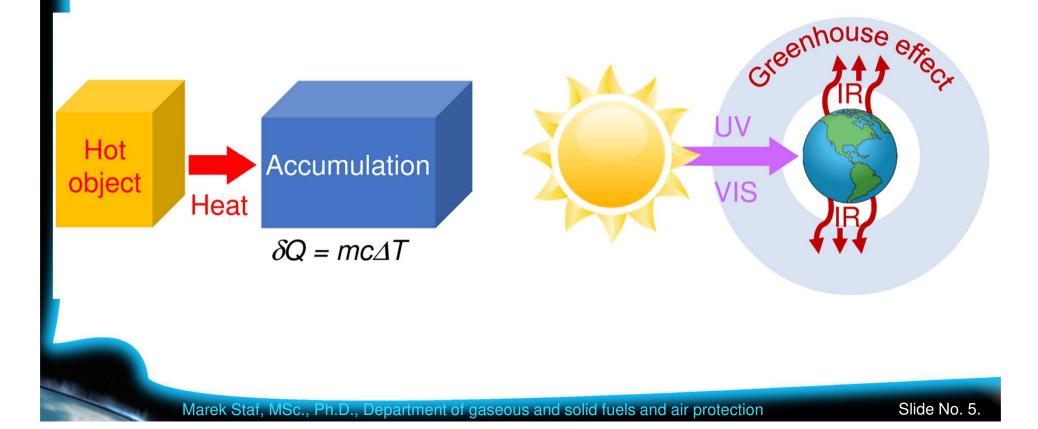
#### **Scope of lecture 6**

Pollutants and important chemical agents in the air – introduction to the problematics of greenhouse gases

- General classification of all types of pollutants according to their effects
- Overview of the main greenhouse gases
- Mechanism of greenhouse gas impacts
- Global warming potential, its importance and calculation
- Radiative forcing and radiative forcing capacity
- National greenhouse gas inventory plan and economical branches contributing to GHG emissions
- General relationship between economic activities and GHG emissions
- Worldwide emissions of major GHGs according to their chemical properties and industrial sectors

### **Distribution of pollutants**

- Pollutants can be divided into following fundamental groups:
  - Substances with acidic reaction
    - decrease atmospheric pH and subsequently acidify soil and water;
  - Toxic substances
     damage health of plants and animals chemically, physically or due to their radioactivity ;
    - ► Substances damaging O<sub>3</sub>-
    - ►Greenhouse gases


- decompose stratospheric ozone layer;
- change a balance between heat absorption and radiation from the atmosphere;
- Precursors
   their initial form has no dangerous properties, but undergo changes resulting in the above mentioned properties, or allow other compounds to be transformed into dangerous.

Marek Staf, MSc., Ph.D., Department of gaseous and solid fuels and air protection

Slide No. 4.

#### **Greenhouse effect**

- The greenhouse effect is not simply the accumulation of heat.
- Principle: The Earth absorbs UV and VIS and emits IR, but specific gases retain it in the atmosphere.
- Gases capable of this process = greenhouse gases (GHGs).



#### **Greenhouse gases**

• Main greenhouse gases:



```
\begin{array}{l} H_2O\ (vapour)\\ CO_2\\ C_xH_y\ (especially\ CH_4)\\ N_2O\\ F\mbox{-}gases\ and\ CIF\mbox{-}gases\ =\ CFC,\ HFC,\ PFC\ a\ SF_6\\ O_3 \end{array}
```

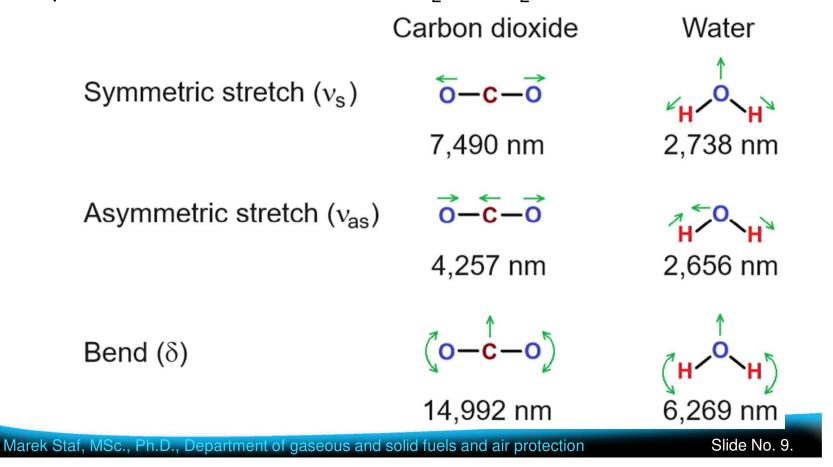
- Substances reported within National GHG Inventory:
  - $CO_2$   $N_2O$   $CH_4$ F-gases = HFC, PFC and  $SF_6$
- Substances involved in emission trading within EU ETS:
  - CO<sub>2</sub> N<sub>2</sub>O Perfluorinated hydrocarbons (PFC)

Slide No. 6.

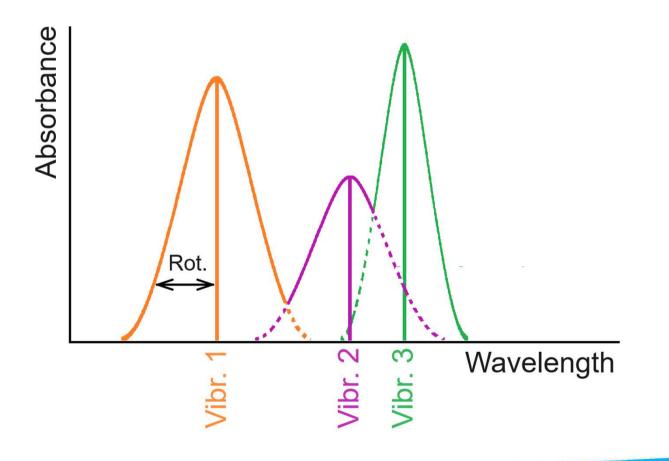
#### Greenhouse gases

#### What is their origin:

| <ul> <li>H<sub>2</sub>O (vapor)</li> </ul>                                 | NATURAL |               |  |  |  |  |
|----------------------------------------------------------------------------|---------|---------------|--|--|--|--|
| CO <sub>2</sub>                                                            | NATURAL | ANTHROPOGENIC |  |  |  |  |
| <ul> <li>C<sub>x</sub>H<sub>y</sub> (especially CH<sub>4</sub>)</li> </ul> | NATURAL | ANTHROPOGENIC |  |  |  |  |
| ■ N <sub>2</sub> O                                                         | NATURAL | ANTHROPOGENIC |  |  |  |  |
| F-gases a CIF-gases:                                                       |         |               |  |  |  |  |
| CFCs (chlorofluorocarbon                                                   | IS)     | ANTHROPOGENIC |  |  |  |  |
| HFCs (hydrofluorocarbon                                                    | s)      | ANTHROPOGENIC |  |  |  |  |
| PFCs (perfluorocarbons)                                                    |         | ANTHROPOGENIC |  |  |  |  |
| SF <sub>6</sub> (sulfur fluoride)                                          |         | ANTHROPOGENIC |  |  |  |  |
| • O <sub>3</sub>                                                           | NATURAL | ANTHROPOGENIC |  |  |  |  |


• Mechanism of GHG impact:

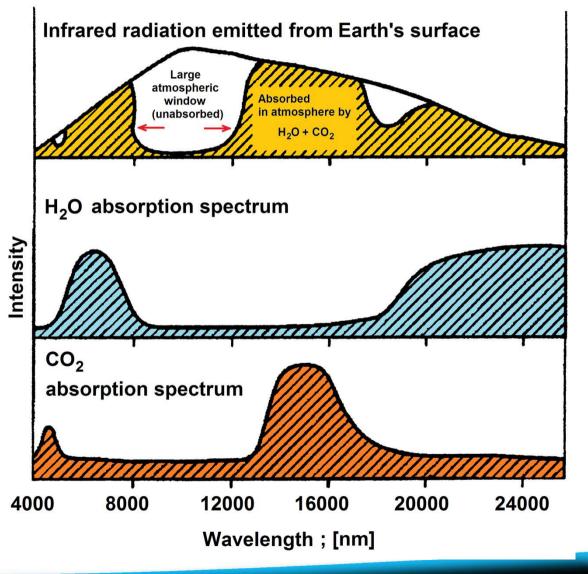
3


- Greenhouse gases must absorb radiation in IR part of spectrum; (quantum transition during IR absorption = values of molecular vibrations)
- 2 Molecules must change their dipole moment due to IR absorption;
  - Symmetric di-atomic molecules, like  $H_2$ ,  $N_2$ ,  $O_2$ , do not change their dipole moment  $\Rightarrow$  they are IR inactive;
  - Molecules with different partial charges on the atoms, like CO, CO<sub>2</sub>, N<sub>2</sub>O, NO, HCI, change the dipole moment  $\Rightarrow$  they are IR active;
  - -- GHG molecules must have sufficient lifetime in the atmosphere
  - GHG must be present at sufficient concentrations (e.g. average content of  $H_2O = 0.4$  % vol., average content of  $CO_2 > 0.04$  % vol.).

#### 2023 highest $CO_2$ value = 424 ppm !

- Mechanism of GHG impact:
  - Each molecular vibration has its specific wavelength value, but 1 molecular vibration induces high number of various rotation levels ⇒ extension of absorption belt width.
  - Example molecular vibrations of  $CO_2$  and  $H_2O$ :



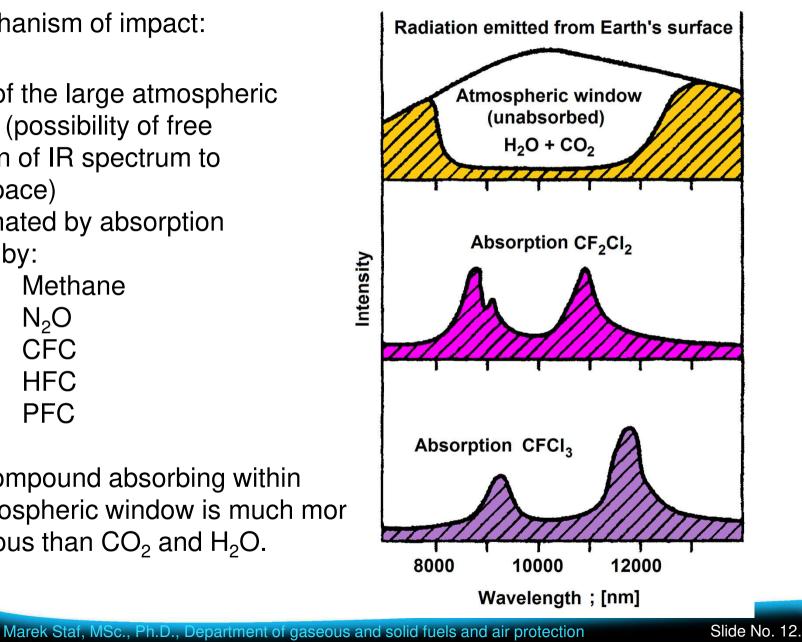

- Mechanism of GHG impact:
  - Each molecular vibration has its specific wavelength value, but 1 molecular vibration induces high number of various rotation levels ⇒ extension of absorption belt width.



Slide No. 10.

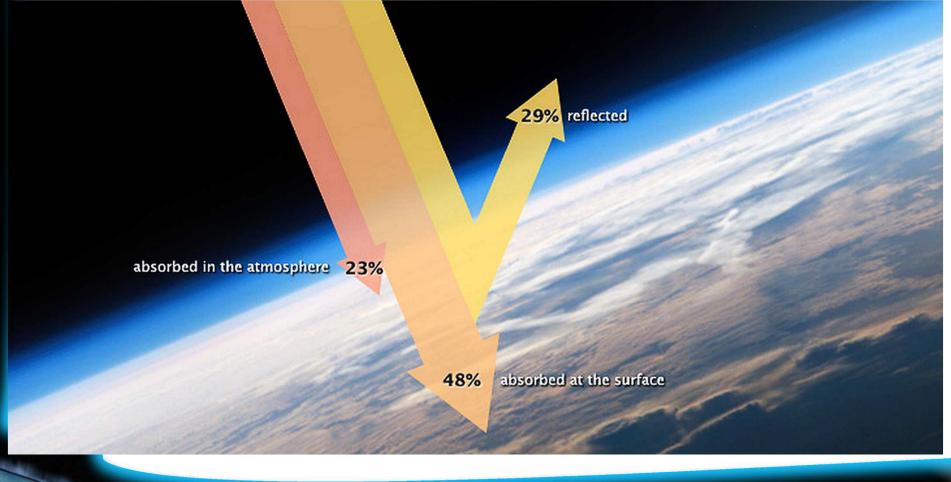
Mechanism of GHG impact:

Due to extension of absorption belt width  $CO_2$  and  $H_2O$ cover a dominant part of IR radiation emitted by the Earth's surface back to the outer space




Mechanism of impact: 

Space of the large atmospheric window (possibility of free radiation of IR spectrum to outer space) is eliminated by absorption caused by:

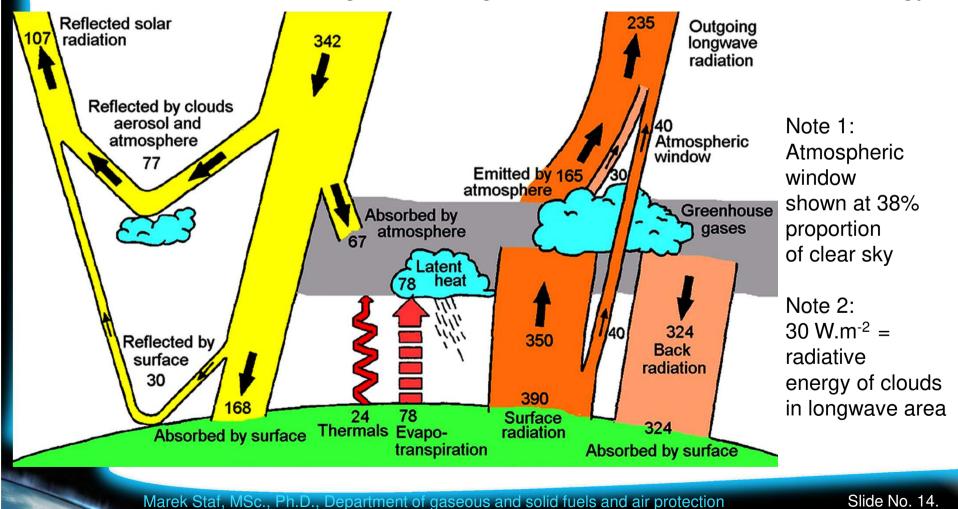

Methane  $N_2O$ CFC HFC PFC

Each compound absorbing within the atmospheric window is much mor dangerous than  $CO_2$  and  $H_2O$ .



#### **Energy balance of the atmosphere**

- Balance of incoming solar radiation (UV + VIS)
  - Total incoming energy flux  $\cong$  340 W m<sup>-2</sup> (defined in tropopause)
  - 29% reflected (98.6 W m<sup>-2</sup>), 23% (78.2 W m<sup>-2</sup>) absorbed in the atmosphere




Marek Staf, MSc., Ph.D., Department of gaseous and solid fuels and air protection

Slide No. 13.

#### **Energy balance of the atmosphere**

- Climatologic theory and energy balance: (Source: Kiehl and Trenberth, 1997)
  - Equilibrium between UV and visible radiation absorbed by the planet and reflection of IR radiation back to the space. Due to absorption of IR radiation, GHG gases change this ratio ⇒accumulation of energy.



#### **Energy balance of the atmosphere**

#### Radiative forcing

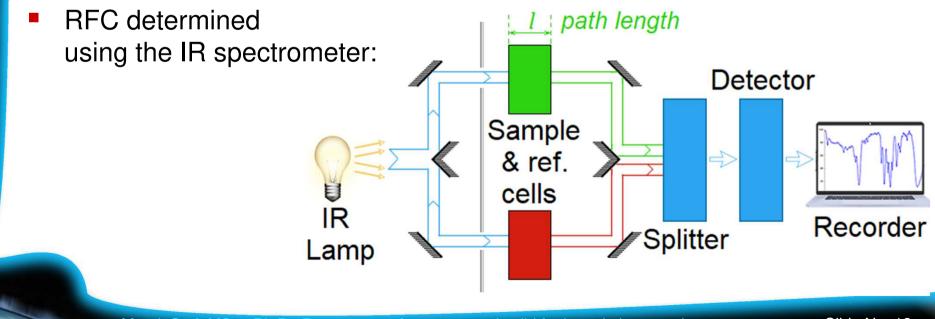
- Radiative forcing = climate forcing: It is defined as the difference between the solar energy absorbed by the Earth and the energy radiated back to outer space.
- Standardly defined in Tropopause;
- Unit: Watt per square meter of the Earth surface;
- Positive radiative forcing = predominance of the absorbed energy over radiated energy ⇒ warming of the system;
- Negative radiative forcing = predominance of the emitted energy over absorbed energy  $\Rightarrow$  cooling of the system.

#### What the Climatologic theory says

- There is the equilibrium between UV and visible radiation absorbed by the planet and reflection of IR radiation back to the space.
- Due to absorption of IR radiation, GHG gases change this ratio  $\Rightarrow$  accumulation of energy
  - Since the beginning of the industrial era: Of all the investigated factors, only the concentration of GHGs changed along with the rise in temperature.

#### How we can express the GHG impact

- Several possible parameters, which the most widespread are:
  - Radiative Forcing Capacity (RFC)
  - Global Warming Potential (GWP)
- RFC = the amount of energy per unit area per unit time, absorbed by greenhouse gases, which would otherwise be radiated into space:
  - Do not confuse with "Radiative Forcing" = difference between the solar energy absorbed by the Earth and the energy radiated back to outer space.
- GWP is a relative measure of how much heat is retained in the atmosphere by a gas.
  - GWP compares the amount of heat, retained by the certain amount of the gas, relative to the same amount of the reference gas
  - GWP is a dimensionless factor
    - GWP is related to  $CO_2$ , thus  $GWP(CO_2) = 1$


### Radiative Forcing Capacity (RFC)

RFC expressed by the formula (Beer's law):

$$RF = \sum_{n=1}^{100} \frac{Abs_i \cdot F_i}{l \cdot n}$$

- $-Abs_i$
- $-F_i$
- /
- <u>–</u> n
- Subscript i

- = integrated infrared absorbance in i<sup>th</sup> interval
- = radiative forcing in i<sup>th</sup> interval
- = path length of the IR measuring cell (cm)
- = number density of GHG molecules (cm<sup>-3</sup>)
- = interval 10 cm<sup>-1</sup>



Slide No. 18.

- Global warming potential (GWP)
  - GWP values, published by the Intergovernmental Panel on Climate Change (IPCC) were slightly changed several times between 1996 and 2001.
  - In 2001, the exact method for GWP calculation was published in the third IPCC report.
  - GWP is defined as a ratio of the **RF** of 1 kg of the trace gas, integrated according to time, and **RF** of 1 kg of the reference gas.
  - Equation for calculation of the GWP for a particular gas is following:

$$GWP(x) = \frac{\int_{0}^{TH} a_x \cdot [x(t)]dt}{\int_{0}^{TH} a_r \cdot [r(t)]dt}$$

Global warming potential (GWP)

$$GWP(x) = \frac{\int_{0}^{TH} a_x \cdot [x(t)]dt}{\int_{0}^{TH} a_r \cdot [r(t)]dt}$$

- The meaning of symbols in the equation is:
  - TH ... Time horizon, for which the calculation is realized;
  - a<sub>x</sub> ... Radiative efficiency for unit increase of atmospheric abundance of the selected substance [W.m<sup>-2</sup>.kg<sup>-1</sup>]
  - [x(t)] ... Time-dependent decay of the substance (decrease of its abundance from its release in the time t = 0 until t = TH)

Denominator of the fraction includes the same variables for the reference gas (e.g.  $CO_2$ ).

- Global warming potential, GWP
  - GWP depends on the following factors:

The rate of absorption of IR radiation by the substance;

Position of wavelengths, absorbed by the substance, in the solar spectrum;

Lifetime of the substance in the atmosphere.

Slide No. 21.

- GWP calculation meets problems:
  - Radiative efficiencies a<sub>x</sub>, a<sub>r</sub> not constant within the whole-time horizon
  - For the majority of gases IR absorbance increases linearly with their abundance in the atmosphere.
  - Several important GHGs show non-linear dependence, e.g. CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O
  - Increase of CO<sub>2</sub> concentrations has lower impact on overall IR absorption (saturation of corresponding wavelengths) TOO HIGH CONCENTRATION
  - Calculation for H<sub>2</sub>O almost impossible: Unequal H<sub>2</sub>O distribution in troposphere (average ca. 0.4 % vol., but up to 1.8 % vol. near the sea level.

## GHG from different economical sectors

- Statistical values given by the National Greenhouse Gas Inventory
- Based on international agreement United Nations Framework Convention on Climate Change (UNFCCC)
- Mandatory IPCC methodology (Guidelines for National Greenhouse Gas Inventories etc.)
- UNFCCC parties collect data from 5 sectors:
  - Energy
  - Industrial processes
  - Agriculture
  - Land-Use, Land-Use Change and Forestry (LULUCF)
  - Waste

Slide No. 23.

- National Greenhouse Gas Inventory:
  - Emissions of all GHGs are assessed collectively (together) using overall = aggregated emissions;
  - Aggregated emission = sum of emissions of each gas, multiplied by GWP conversion coefficients;
  - For the purposes of the inventory GWPs are listed for 100-years horizon:  $GWP(CO_2) = 1$ ,  $GWP(CH_4) = 21$ ,  $GWP(N_2O) = 310$
  - Overall aggregated emission, which is the fundament for obligation stated by Kyoto protocol, is expressed by:

Equivalent amount of  $CO_2$  causing the same impact as the sum of all gases included in an aggregated emission.



- National Greenhouse Gas Inventory according to sectors:
  - Sector Energy; the most important category
  - Sector Industrial processes
  - Sector Agriculture
  - Sector Land-Use, Land-Use Change and Forestry, LULUCF

#### Sector Waste

For more detailed information about methodology, please see "National Inventory Report, NIR", or visit page: http://unfccc.int/national\_reports

Slide No. 25.

- National Greenhouse Gas Inventory according to sectors:
  - Sector Energy = the most important category
    - In central Europe > 85 % of the overall emissions of the greenhouse gases (mostly CO<sub>2</sub>);
    - Combustion processes;
    - Processes joined with mining, conversion and manufacturing of fuels and energy(refineries, fugitive emissions of methane from coal mining and so on);
    - Emissions from local transport and other mobile sources;
    - Part of the fuel consumptions is reported in other categories, or it is not taken into account (non-energetic utilisation of fuels for production of industrial lubricants, asphalt etc.; usage of fuels for international and air transport, utilisation of coke as reducing agent for Fe production; non-energetic usage of fuels as raw materials in chemical production, e.g. of NH<sub>3</sub>)

National Greenhouse Gas Inventory – according to sectors:

#### Sector Industrial processes

- Emissions from metallurgical and chemical processes (CO<sub>2</sub> from application of coke for reduction of iron ores to Fe, emissions of N<sub>2</sub>O from production of HNO<sub>3</sub>, CO<sub>2</sub> from production of ammonia etc.)
- Processes of decomposition of carbonate minerals (thermal treatment of carbonates in production of cement and lime, during manufacture of glass and ceramics and during flue gas desulfurization using limestone);
- Application of F-gases =HFC, PFC and SF<sub>6</sub> (particularly in cooling and chilling processes).

National Greenhouse Gas Inventory – according to sectors:

#### - Sector Agriculture

 $\rightarrow$  In central Europe mostly emissions of CH<sub>4</sub> and N<sub>2</sub>O;

Breeding of animals (anaerobic decomposition of animal manure and CH<sub>4</sub> from enteric fermentation = digestion of vegetal aliment, especially breeding of bovine animals, less from swine breeding);

Bacterial denitrification in soil (N<sub>2</sub>O).
 Note: In Asia, the biggest methane emissions come from rice cultivation.



Slide No. 28.

- National Greenhouse Gas Inventory according to sectors:
  - Sector Land-Use, Land-Use Change and Forestry, LULUCF

Emissions of CO<sub>2</sub>;

→ For example in the Czech Republic this sector showed higher CO<sub>2</sub> capture than it emits ⇒ showed negative CO<sub>2</sub> balance diminishing overall emissions from other sectors;

• negative  $CO_2$  balance only till 2018

• forests damaged due to dry seasons  $\Rightarrow$  CO<sub>2</sub> emitted



Marek Staf, MSc., Ph.D., Department of gaseous and solid fuels and air protection

Slide No. 29.

National Greenhouse Gas Inventory – according to sectors:

#### – Sector Waste

- $\rightarrow$  In central Europe mostly emissions of CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>O;
- Municipal waste dumps (CH<sub>4</sub>); reported emissions of CH<sub>4</sub> are reduced by collected and energetically exploited volumes of methane (biogas);
- Treatment of municipal and industrial wastewater (CH<sub>4</sub>, N<sub>2</sub>O); reported emissions of CH<sub>4</sub> are reduced by collected and energetically exploited volumes of methane (biogas);

Note. There are 2 methods for evaluation of  $CH_4$  emissions from dumps:

- 1. It is supposed that a decomposable part of C, disposed in the dump in the one year is transformed into methane and biogenic CO<sub>2</sub>
- 2. Application of mathematic model of slower, gradual decomposition of C into methane and carbon dioxide  $\Rightarrow$  more precise, preferred model.

### Anthropogenic influence on GHG

 Relationship between economic development and CO<sub>2</sub> production

(Source: Gomes; Carbon Dioxide Capture and Sequestration)

- Y. Kaya proposed the equation:

 $CO_2 \uparrow_{total} = \frac{POP}{POP} \times (GDP_{PC}) \times (BTU/GDP) \times (CO_2 \uparrow / BTU) - CO_2 \downarrow$ 

| CO₂↑ 1 | total CO <sub>2</sub> released to atmosphere |
|--------|----------------------------------------------|
|--------|----------------------------------------------|

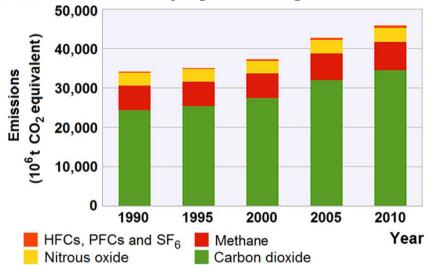
- $CO_2\downarrow$  total  $CO_2$  captured by geosphere and biosphere
- POP worldwide population
- GDP<sub>PC</sub> gross domestic product per capita
- GDP total gross domestic product
- BTU/GDP energy consumption per GDP
- $CO_2^{\uparrow}/BTU$   $CO_2$  released per consumed energy

- Production of greenhouse gases (Source: Gomes; Carbon Dioxide Capture and Sequestration)
  - Values for preindustrial era have been obtained by ice core analysis;

| Greenhouse gas (grou             | <b>b</b> )      | Content in at                        | mosphere                  | Lifetime in                | Main sources                                                                | GWP                                |  |
|----------------------------------|-----------------|--------------------------------------|---------------------------|----------------------------|-----------------------------------------------------------------------------|------------------------------------|--|
|                                  | -1              | Preindustrial                        | 1994                      | atmosphere                 | main sources                                                                | [CO <sub>2</sub> equ.]             |  |
| Carbon dioxide                   | CO <sub>2</sub> | 280 ppm <sub>vol.</sub>              | 358 ppm <sub>vol</sub>    | 50 – 200<br>years          | Fossil fuels<br>combustion, change<br>in soil usage                         | 1                                  |  |
| Methane                          | CH₄             | 700 ppb <sub>vol.</sub>              | 1 720 ppb <sub>vol.</sub> | 12 – 17<br>years           | Mining of fossil fuels,<br>rice fields, waste<br>dumps, animals<br>breeding | 21                                 |  |
| Nitrous oxide                    | N₂O             | 275 ppb <sub>vol</sub>               | 312 ppb <sub>vol</sub>    | 120 – 150<br>years         | Production of<br>fertilizers, industrial<br>processes,<br>combustion        | 310                                |  |
| Chlorfluorinated<br>hydrocarbons | CFC             | CFC 0 503 ppt <sub>vol.</sub> 102 ye |                           | 102 years                  | Cooling fluids, production of foams                                         | 125 – 152                          |  |
| Hydrofluorinated<br>hydrocarbons | HFC             | 0                                    | 105 ppt <sub>vol.</sub>   | 13 years                   | Cooling fluids                                                              | 140 – 11 700<br>(different types)  |  |
| Perfluorinated hydrocarbons      | PFC             | 0                                    | 110 ppt <sub>vol.</sub>   | 50 000 years               | Production of<br>Aluminium                                                  | 6 500 – 9 200<br>(different types) |  |
| Sulfur hexafluoride              | 0.              | 72 ppt <sub>vol.</sub>               | 1 000 years               | Production of<br>Magnesium | 23 900                                                                      |                                    |  |

#### Production of greenhouse gases

(Sources: http://cait.wri.org, www.epa.gov/climatechange/indicators, http://faostat3.fao.org/faostat-gateway/go/to/download/G2/\*/E))


#### Global emissions of major greenhouse gases between 1990 - 2010



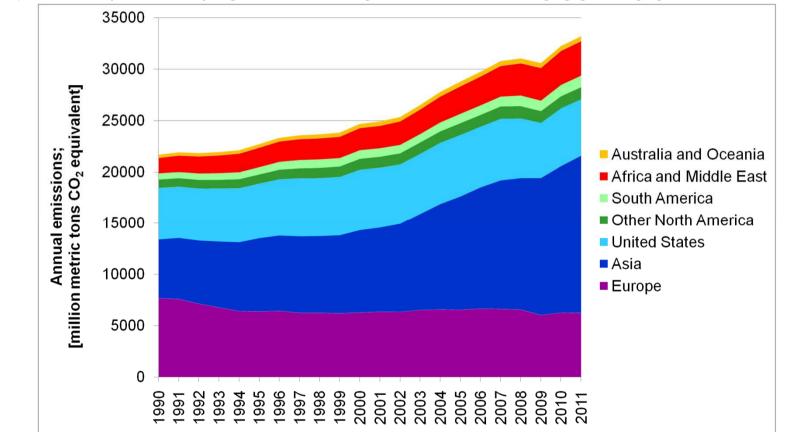
#### Global emissions of greenhouse gases

(Source: http://www3.epa.gov/climatechange/science /indicators/ghg/global-ghg-emissions.html) Global em

Global emissions of major greenhouse gases between 1990 - 2010



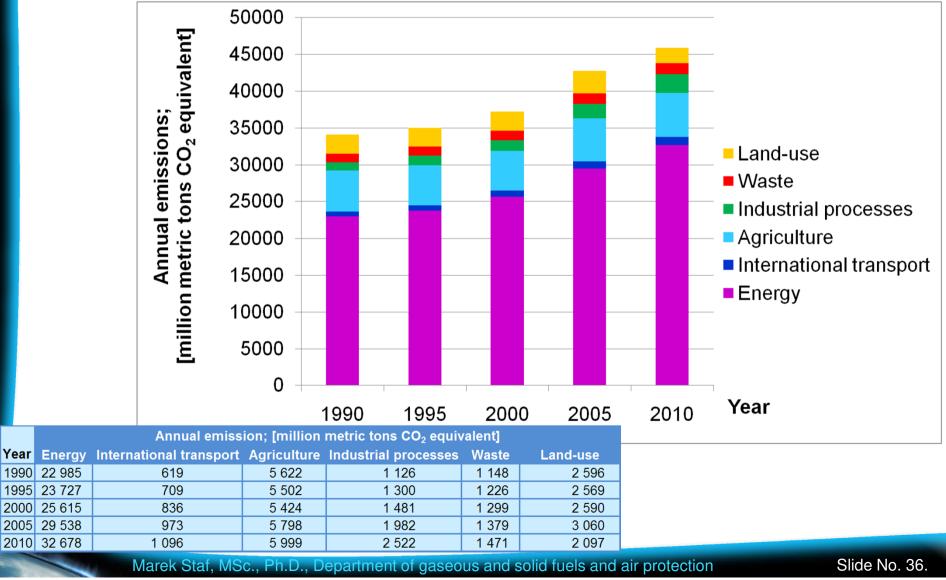
| Annual emission; | [million metric t | ons CO <sub>2</sub> equivalent] |
|------------------|-------------------|---------------------------------|
|                  |                   |                                 |


| Year | Carbon dioxide | Methane | Nitrous oxide | $HFCs + PFCs + SF_6$ | Total  |
|------|----------------|---------|---------------|----------------------|--------|
| 1990 | 24 324         | 6 268   | 3 241         | 262                  | 34 095 |
| 1995 | 25 345         | 6 205   | 3 193         | 291                  | 35 033 |
| 2000 | 27 349         | 6 324   | 3 143         | 429                  | 37 246 |
| 2005 | 31 949         | 6 816   | 3 367         | 598                  | 42 730 |
| 2010 | 34 476         | 7 196   | 3 520         | 672                  | 45 863 |

Marek Staf, MSc., Ph.D., Department of gaseous and solid fuels and air protection

Slide No. 34.

#### Global emissions of greenhouse gases – according to regions


(Source: http://www3.epa.gov/climatechange/science/indicators/ghg/global-ghg-emissions.html)



|                        | Annual emission; [million metric tons CO <sub>2</sub> equivalent]                 |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |        |         |        |        |        |        |
|------------------------|-----------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|---------|--------|--------|--------|--------|
| Region                 | 1990                                                                              | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004   | 2005   | 2006   | 2007    | 2008   | 2009   | 2010   | 2011   |
| Europe                 | 7 678                                                                             | 7 575 | 7 123 | 6 752 | 6 405 | 6 374 | 6 420 | 6 242 | 6 236 | 6 195 | 6 263 | 6 349 | 6 330 | 6 513 | 6 557  | 6 537  | 6 644  | 6 6 1 4 | 6 548  | 6 022  | 6 256  | 6 231  |
| Asia                   | 5 733                                                                             | 5 979 | 6 187 | 6 456 | 6 734 | 7 164 | 7 375 | 7 474 | 7 500 | 7 627 | 8 059 | 8 229 | 8 613 | 9 402 | 10 327 | 11 083 | 11 859 | 12 569  | 12 855 | 13 380 | 14 316 | 15 352 |
| United States          | 5 042                                                                             | 5 014 | 5 077 | 5 189 | 5 269 | 5 330 | 5 493 | 5 664 | 5 653 | 5 695 | 5 894 | 5 841 | 5 794 | 5 855 | 5 958  | 5 979  | 5 899  | 5 985   | 5 792  | 5 366  | 5 619  | 5 481  |
| Other North America    | 825                                                                               | 836   | 851   | 851   | 899   | 902   | 940   | 981   | 1 018 | 1 026 | 1 071 | 1 066 | 1 080 | 1 109 | 1 113  | 1 146  | 1 150  | 1 203   | 1 194  | 1 145  | 1 169  | 1 180  |
| South America          | 576                                                                               | 590   | 605   | 630   | 657   | 697   | 759   | 800   | 816   | 809   | 828   | 823   | 814   | 810   | 865    | 912    | 929    | 959     | 1 050  | 1 023  | 1 104  | 1 127  |
| Africa and Middle East | 1 507                                                                             | 1 596 | 1 660 | 1 727 | 1 810 | 1 896 | 1 972 | 2 029 | 2 044 | 2 074 | 2 153 | 2 173 | 2 282 | 2 392 | 2 515  | 2 674  | 2 799  | 2 978   | 3 123  | 3 172  | 3 311  | 3 347  |
| Australia and Oceania  | 299                                                                               | 300   | 305   | 310   | 318   | 330   | 342   | 352   | 372   | 384   | 392   | 407   | 413   | 417   | 434    | 440    | 446    | 456     | 458    | 462    | 454    | 454    |
|                        | Marek Staf, MSc., Ph.D., Department of gaseous and solid fuels and air protection |       |       |       |       |       |       |       |       |       |       | Slide | No. 3 | 35.   |        |        |        |         |        |        |        |        |

#### Global emissions of greenhouse gases – according to sectors

(Source: http://www3.epa.gov/climatechange/science/indicators/ghg/global-ghg-emissions.html)

