Biodetergents

- 1. For households
- 2. Industrial cleaning (mebranes, filters, heating equipments)
- 3. Institutional laundry (hospitals, slaughterhauses)
- 4. For dishwashers

Origin and character of soil:

epidermal "debris"

"From own production": proteins, lipids, lipoprotein komlpexes,

From food: animal or plant origin

Composition of detergents

- Washing customs

component	Function	compound	Liquid (%)	Powder (%)
surfaktants	Emulsification \$\preceq\$ surface tension	Ionogenic nonionogenic	$ \begin{array}{c} 10 - 50 \\ (10 - 30) \end{array} $	10 - 20
Activation additives	pH, buffer \psi water hardness Stabilsation, chelating agents	TPPS NTA citrate, soda zeolites	0 – 10 (5 – 15)	20 - 45
Bleaching agents	Oxidation of dyes	Perborates Percarbonates EDTA	0	13 - 28
Enzymes	↑ effectivness	Proteases, amylases, lipases, celulases, oxidases etc.	0-6(0-1)	0,5 – 1,5
others	builders, stabilizers, antifoaming agents, bleaches, parfumes	Síran sodný mýdla		Do 100
pH 1% solution			7,5 - 9	9,5 - 11

Surfaktans: ionogenic- alkylbenzensulphates, alkoholsulphates, (laurylpolyglykolethersulphate), nonionogenic: alkoholethoxylates

Compatibility of enzymes with detergents

Enzymes for detergents:

Active in the pH range 7 - 11Active in the temperature range 4 - 60 °C Compatible with surface active components, oxidative agents, resistent to proteolysis

In washing solution: denaturation

chemical modification

In detergent:

Powder: storage temperature

humidity

oxidative agents (brighteners)

Liquid: surfactants (tensides)

stabilised by Ca²⁺ addition

proteolysis

lowering water content (propylenglykol)

reversible inhibitors (borate, AA, protein hydrolyzates)

Proteases - only serine type

Cleavage of proteinaceous soils → peptides are usually more soluble

Properties of some technical preparations:

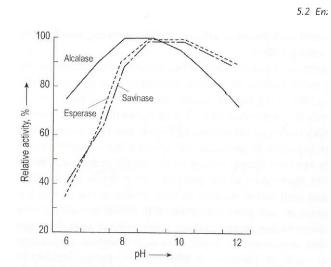
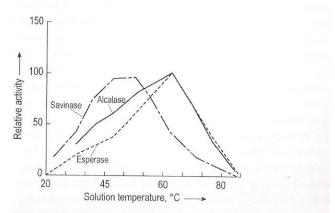
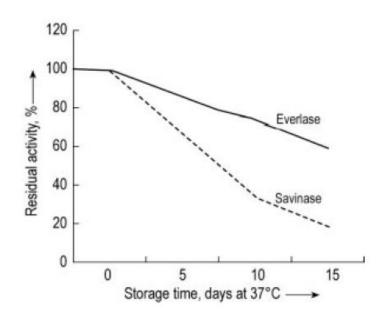



Figure 58. pH-dependent activity of different detergent proteases at 25 °C, 10 min reaction time, DMC substrate [588-590].



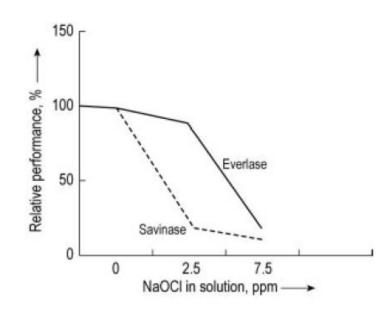

Figure 59. Temperature-dependent activity of different detergent proteases in solution at pH 8.5 (Alcalase) and 10.1 (Savinase, Esperase), 10 min reaction time, DMC substrate [588-590].

Table 22. Examples of commercially available detergent proteases (Novozymes) [587–591]

Product name	Microorganism	pH application range	Temperature application range
Alcalase	Bacillus species	6-10	10-80
Esperase	Bacillus species	7-12	10-80
Everlase	GM Bacillus spp.	8-11	15-80
Savinase	GM Bacillus spp.	8-11	15 – 75
Durazym	GM Bacillus spp.	8-11	15 – 70

stabilization.....

Savinase → Everlase -1 mutation Met222/Ala

Lipases

Lipolase

Lipolase ultra

Asp96 x leu

Lipoprime – effective in1.cycle

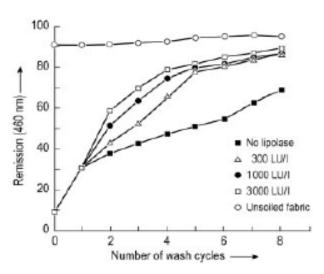


Figure 66. Multi-cycle wash performance of lipase in detergents. Stain removal as function of number of wash cycles. European wash conditions 5 g/L powder detergent, 30 °C, 20 min, wash at pH 9.7. Polyester swatch soiled with lard fat plus Sudan red [610]. LU/L= Lipase Units per Liter

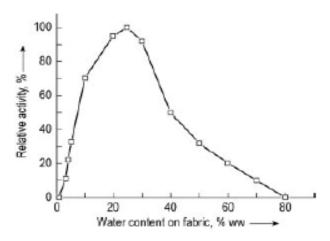


Figure 67. Lipase performance in the laundry drying step. Relative enzyme activity during drying after a European wash and one rinse with tap water [612].

Celulases

Celluzyme, Carezyme, Endolase - Thermomyces lanuginosus

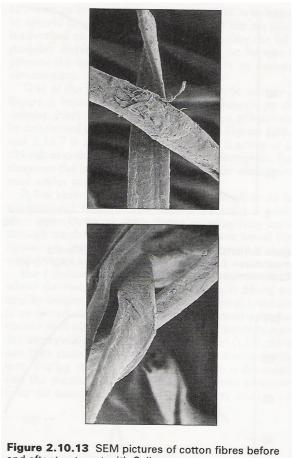


Figure 2.10.13 SEM pictures of cotton fibres before and after treatment with Celluzyme

Amylasy -

škrobové nečistoty, želatinizace, tvorba filmů (amylosa)

Termamyl, Fungamyl, BAN, Duramyl

Current development in the field:

Pectolytic enzymes - removal of fruit spots (Pectaway, Pectawash)

Mannanase – removal of mannans – food thickeners - (Mannawa)

First used in Ariel 2000

- Oxidoreductases peroxidases, laccase, LOX
- production of oxidazing agent in situ replacement of bleaches

Detergents for industrial and institutional cleaning – homogenous soiling Brewery, production of fruit juices, dairy industry, hospitals etc.

Example: heating surfaces in dairies

burnt-on milk: products of Maillards reactions + lipids

+ milk stone - complex of calcium phospahate and proteins

Removal : 0.5 - 1% NaOH, surfactants, EDTA, 75 - 85°C, 0.5 - 1%HNO $_3$ + surfactants

Using enzymes:

Soiling based on whole milk

WXXXXXXXXX

Hard surface

Emulsifier (stabilizer)

Soap ON Protein-fat complex (Soiling)

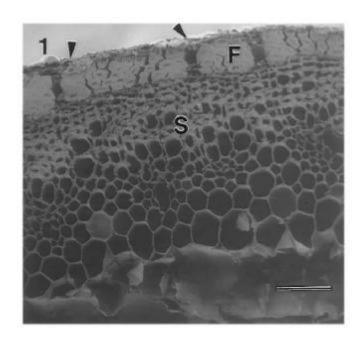
Enzymes

FIG. 1. In situ cleaning effects of protease + lipase.

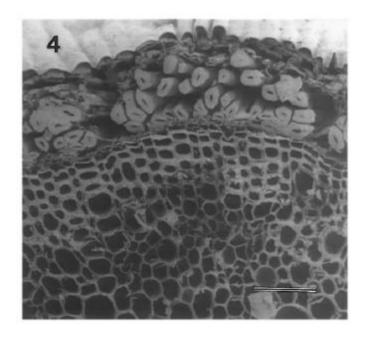
Agriculture

Feeding – using of less valuable fodder material (

Monogastric (cereals) x polygastric (green fodder)


- formulation of fodders \rightarrow celulases, hemicelulases (xylanases) release of nutritive components(starch, proteins), β -glukanases consistency of excrements (poultry)
- enzymes as digestives proteases, amylases, glucanases
 Removal of ANF protease inhibitors, increase of digestibility
- protection of the environment phytase
 myo-inositol hexaphosphate phosphohydrolase (EC 3.1.3.8)

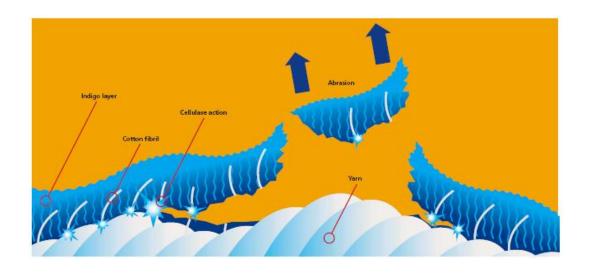
$$60 - 80 \% P = IP_6$$


Chelating agent – ↓Ca,Cu,Zn,Mg

Flax retting

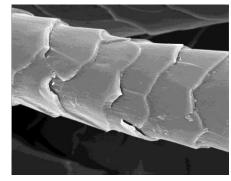
Enzyme retting - Flaxzyme, Viscozyme

control



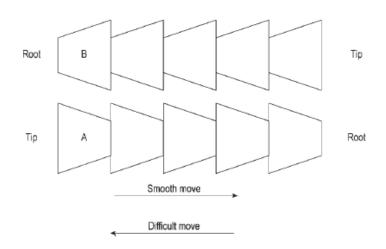
8h of enzyme treatment

Textile industry


- 1. Removal of starch from textiles before bleaching and dyeing (amylases)
- 2. biostoning (celulases)
- 3. Bio-polishing of cotton textiles (celulases)
- 4. Surface modification of wool (proteases)
- Scouring removal of cell wall residues from cotton fabrics (pectolytic enyzmes)

Bio-stoning of denime textiles

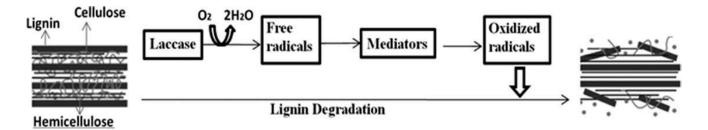
Wool processing – to avoid felting and shrinkage during washing

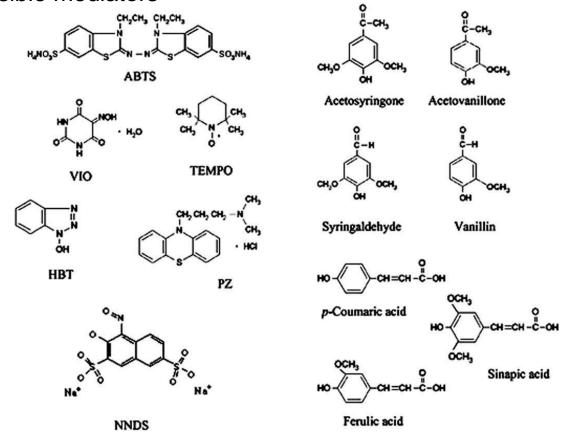


Alpha keratin – helical structure with number of disulphide bonds Step - like structure of fiber surface

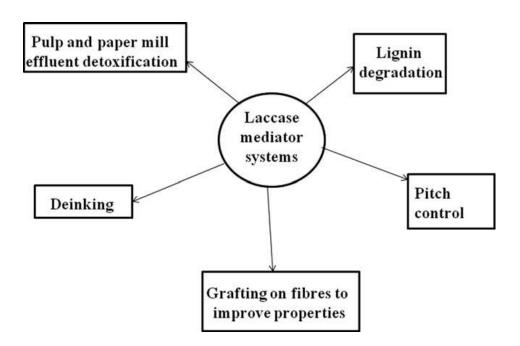
- oxidation with hypochlorite (NaClO)
- coating surface with polymers (chitosan)
- combination of both

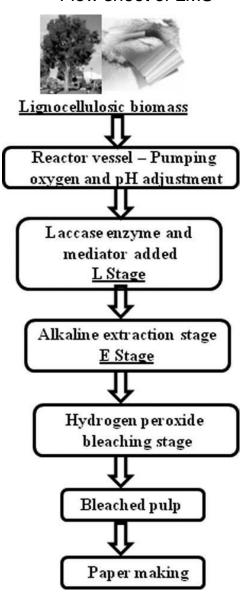
Enzymes more environmentally friendly:


- proteases
- transglutaminase
- Risk (loss of weight)


Wood processing for paper industry

- Removal of lignin and hemicellulose components (xylanases and laccase)
- Bleaching (laccase, peroxidases Lip, MnP)
- Removal of pitch (lipases, phospholipases)
- Paper finishing removal of starch from the surface (amylases)


Removal of lignin components and bleaching


Possible mediators

Usage of laccase mediator system in paper industry

Flow sheet of LMS

