

Basic characteristics of the most important enzymes for technological applications

Oxidoreductases

- catabolism, respiration, bioenergetics
- Mostly intracellular, bound to the structures

Glucose oxidase, peroxidase, catalase, lipoxygenase, polyphenol oxidase, lactoperoxidase, xanthin oxidase, ascorbate oxidase etc.

Glukose oxidase, β-D-glucose:O₂ 1-oxidoreductase, EC 1.1.3.4 (notatin)

 β -D-glucose + $O_2 \rightarrow \delta$ -D-gluconolacton + H_2O_2

Present in fungi Aspergillus, Penicillium, insects etc.

Properties: Mw 130 -175 kDa, 2 identical subunits,

```
Cofactor FAD (prosthetic group), Fe
```

Glycoprotein: 11-13 % of neutral saccharides (mannose),

2% aminosaccharides

pH optimum: 5,5 – 5,8, pl = 4,2

Inhibitors: Ag²⁺, Hg²⁺, Cu^{2+,} D-glucal, H₂O₂ (E-FADH₂ 100x higher)

Physiological function: production of H_2O_2 - antibacterial and antifungicide effect

$1 \cos \alpha \pm 0 = \sqrt{8} \cdot D \cdot d \cos \alpha$

Specificity

Substrate	Relative rate of oxidation (%)			
β-D-glucose	100			
α-D-glucose	0,64			
L-glucose	0			
D-mannose	1,0			
D-xylose	1,0			
D-galactose	0,5			
maltose	0,2			
melibiose	0,1			
cellobiose	0,09			

2-deoxy-D-glucose (20-30%), 4-O-methyl-D-glucose (15%), 6-deoxy-D-glucose (10%)

Structural characteristics of the substrate:

- pyranose ring in chair conformation
- equatorial –OH on C3 atom

Determination of GOD activity

- 1. Consumption of oxygen (Clark oxygen electrode)
- 2. Determination of hydrogen peroxide

- 1. Consumption of oxygen (Clark oxygen electrode)
- 2. Determination of hydrogen peroxide
- 3. Titration of gluconic acid

Classical methods: oxidation of I⁻, ferrocyanide

Enzymatic – POD + chromogenic acceptor – spectormetry VIS

(o-dianisidine, 2, 2'-Azino-di-[3-ethylbenzthiazolin-sulfonate] - ABTS etc.)

Applications of glucose oxidase

- Removal of glucose (Maillard's reactions)
- Removal of oxygen (from packed foods or beverages)
- Preparation of gluconic acid (food, concrete)
- Production of hydrogen peroxide
- Quantitative determination of glucose or other compounds which can be converted to glucose (saccharose, starch ...)
- Activity determination of enzymes producing glucose (invertase, amylase etc.)

Oxidoreductases catalyzing decomposition of hydrogen peroxide

catalase peroxidase

Peroxidase:

Donor + $H_2O_2 \ll oxidized donor + 2 H_2O$

Catalase

 $2H_2O_2 \rightarrow 2H_2O + + O_2$

Peroxidases EC 1.1.11.1 - 21 (mostly heme enzymes)

1. Animal - lactoperoxidase, myeloperoxidase – antimicrobial activity

2. Plant and microbial

Group I: intracelular (yeast cyt c POD, chloroplastic, cytosolic ascorbate POD and bacterial POD)

Group II: extracelular fungal (Fungi) LiP, MnP, LiP/MnP : ligniperdous fungi

Group III: extracelular plant (horse radish – HRP , ascorbate peroxidase - APX) + haloperoxidases (CPO) – formation of halogenderivatives of org. compounds - antimicrobial effect

Application of peroxidases:

- 1. Analytics
- 2. label in immunochemistry
- 3. Biotransformations hydroxylations
- 4. Biodegradation of polyphenols (dyes, PCB)
- 5. Biochemical changes in food raw materials

Serpula lacrymans-the dry rot fungus

Gloeophyllum trabeum

Lignine structure – substrate for fungal peroxidases

Lignin and mangan peroxidases:

Low stability- heme oxidation by the reaction products - radicals Low production – response to the low content of nutrients Lipoxygenase, EC 1.13.11.12

Linoleate:O2 oxidoreductase,

(Lipoxidase, caroten oxidase)

Specific for pentadiene conformation

In all eukaryots

Isoenzymes

Classified according to the site of oxidation

9-LOX, 13-LOX

Substrate: linoleic, linolenic, arachidonic acid

Co-oxidation reaction

Activity determination:

- 1. Consumption of O₂
- 2. UV absorbancy of dienoic structure formed (234 nm)

Other oxidoreductases:

Polyphenol oxidase, EC 1.10.3.1, o-diphenol: O2 oxidoreductase

Tetramer containing 4 atoms of Cu²⁺ Catalyzes 2 types of reactions:

- 1. Formation of o-quinones
- 2. Formation of polyphenols

Tyrosinase, phenol oxidase EC 1.14.18.1 Catechol oxidase, cresolase ...

Tyrosine + $O_2 \rightarrow dihydroxyphe \rightarrow dopaquinone$

Laccase EC 1.10.3.2 – bacteria, fungi, plants

Substrates: 4-benzene diol, wide specificity, polyphenols, substituted polyphenols, diamines and many other but not tyrosine

Application: textile, paper, wood industry, bioremediations, wine production, canning and sugar industry

Lignine degradation by laccase:

- Laccase (70 kDa) cannot penetrate into wood
- Not able to oxidize (low redox potential ~0.5 -0.8V) nonphenolic lignin units (redox potential >1.5V)
- Oxidizes only phenolic units less than 20% in wood
- Applied together with oxidation mediator small molecules (LMS) capable to oxidize non-phenolic components of lignin and overcome the accessibility problem

Ascorbate oxidase, EC 1.10.3.3, ascorbate: O_2 oxidoreductase 8 Cu^{2+,} plants

Ascorbic acid + O_2 ---->. Dehydroascorbic acid + H_2O

$X - Y + H - OH \rightarrow H - X + Y - OH$

Nomenclature: classification according to the type of splitted bond

In technology according to the type of the substrate:

Proteases

Others - ie. esterases, aminoacylases

Discovery of new enzyme in 2016!!

PETase EC 3.1.1.101

Bacteria Ideonella sakaiensis

Genetically engineered mutant enzyme

Ideonella sakaiensis

PET H_2O PETase MHET **MHETase** H₂0 HC Ethylene glycol **Terephthalic acid**

polyethylene furanoate - PEF

Proteases

Classified according to different aspects:

- 1. Origin
- 2. localisation in organisms, inactive forms
- 3. pH optimum
- 4. Specificity (endo, exo)
- 5. Mechanism of catalysis -

Activity determination:

- Natural substrates (hemoglobin, casein), UV determination
- Natural substrates with adsorbed dyes, VIS
- Synthetic substrates BAPA, VIS
- Others washing tests

 N_{α} -Benzoyl-L-arginine 4-nitroanilide hydrochloride

Animal proteases

Serine - trypsin, chymotrypsin

Aspartate - pepsin, chymosin

Chymotrypsin

pH optimum: ~ 8,0

Specificity: preferentially peptide bond behind aromatic AA

Trypsin

pH optimum: ~ 8,0

Specificity: Arg, Lys

Pepsin

pH optimum 1,0 - 2,0

hydrophobic, preferably aromatic AA residues

Application: pharmaceuticals (digestives, treatment of injuries, post operational treatment etc, Wobenzym)

Chymosin (rennin), EC 3.4.23.4

Autocatalytic activation - pH 5 \rightarrow chymosin

 $\text{pH 2} \rightarrow \text{pseudochymosin}$

Recombinant: mRNA from calf abomasum - production MO - E.coli, B. subtilis, S.cerevisiae, K. lactis, A. niger

Plant proteases

Papain latex from C. papaya, 5-8%, zymogen SH-proteases, wide specificity, Bromelain Ficin - preferential y -Tyr , Phe Actinidin Cardosin (cynarase)

aspartate protease

Cardoon -Cynara cardunculus L

Microbial proteases

MIKROBIÁLNÍ PROTEASY

Mikroorganismus		serinové	SH-	aspartátové	metalo
Bacillus	alcalophilus	+			
	amyloliquefaciens	+			
	amylosaccharicus	+			
	licheniformis	+		+	
	lentus				+
	polymixa				+
	subtilis				+
	thermoproteolyticus				+
Aspergillus	flavus	+		0	
	melleus	+			
	oryzae	+		+	+
	niger			+	
	saitoi	1.00		+	
	sojae			+	
Endothia parasitica			_	+	
Mucor miehei				+	
Mucor pusillus				+	
Penicillium sp.				+	
Rhizopus delemar		2.4		+	
Clostridium sp.		1	-		+ -
Streptomyces griseus					+

Microbial proteases - characteristics

 Bacterial (Bacillus)
Neutral - metalloproteases, serine proteases pH 5 – 8, low thermotolerance (advantageous for protein hydrolysates) not inhibited by plant proteinase inhibitors (STI - antinutrational) specificity – hydrophobic AA
Thermolysine - Zn²⁺ metalloprotease from *B.thermoproteolyticus*, stabilised by Ca²⁺ at higher temperature (1h, 80 °C, 50% of activity) – production of Aspartam

Alkaline - pH optimum ≈ 10, temp. optimum ≈ 60 °C (suitable for biodetergents) wide specificity (from alkaliphilic or alkalitolerant MO)

Subtilisin – alkalic serine protease from *B. amyloliquefaciens*, 27.5 kDa, type Carlsberg and BPN

cat. triade Asp32, His61, Ser221

Protein engineering: mutation of 50% of AA from 275

↑activity, – SDM Met222xSer, Ala

changing specificity by mutations in the binding site

↑thermostability – introduction of S-S bridges

↑stability in alkalic solutions

↓autoproteolytic activity

Fungal – acidic, neutral, alkalic, metallo, extracellular wide range of pH optima 4 – 11 wide specificity, lower thermotolerance

Aspergillus, Penicillium, Cephalosporium, Trychoderma...

Glycosidases

Hydrolyse glycosidic bonds in homo- and heteroglycosides

Factors affecting the specificity of glycosidases

- configuration of the saccharide (D-, L-, α -, β -)
- character of the cyclic form (furanose, pyranose)
- character of aglycone, character of the atom in glycosidic bond
- size of the saccharide molecule

Determination of the glycosidase activity

- Increase of the reduction potential of the products
- Changes of the physical properties of the substrates (viscosity)
- Change of the optical rotation (polarimetry)
- Colorimetry or fluorometry using dyed polysaccharides
- Special methods (enzymatic)

Glycosidases

Starch degrading enzymes

Endoamylases	α -amylase (α -1 \rightarrow 4) GH13		
Exoamylases	β -amylase (α -1 \rightarrow 4) GH14		
	Glucoamylases (α -1 \rightarrow 4 and α -1 \rightarrow 6)		
	α -glucosidases (α -1 \rightarrow 4 and α -1 \rightarrow 6)		
Debranching enzymes	pullulanases (α-1→6)		
	Isoamylases (α -1 \rightarrow 6)		
Transferases	ases Cyclodextrin glycosyltransferase $(\alpha - 1 \rightarrow 4)$		
	Branching enzyme (α -1 \rightarrow 6)		

Specific cleavage from non-reducing end of oligo- or polysaccharide

- Celulolytic enzymes
- Pectolytic enzymes
- > Invertase, β -galactosidase

Last update: 2018-03-13 © Copyright 1998-2018 AFMB - CNRS - Université d'Aix-Marseille

Starch degrading enzymes

Alpha- and beta - limit dextrins

Plant α-amylase	Plant β-amylase	Bacterial α-amylase	Fungal α-amylase	Gluco- amylase	Mammalian α-amylase
Barley and malted barley	Barley and malted barley	Bacillus amyloliquefaciens	Aspergillus oryzae	Aspergillus niger	Saliva
Wheat and malted wheat	Soybean sweet potato	Bacillus subtilis	Aspergillus candidus	Rhizopus delemar	Pancreas
Malted sorghum	Wheat	Bacillus licheniformis		Rhizopus niveus	
		Pseudomonas stutzeri (G4 amylase)			

Bacterial - thermostable (110 °C), pH - neutral, Ca^{2+,} stabilised by substrate

Fungal - lower temperature stability, specificity of β-amylase

Debranching enzymes

R-enzymes (plant, animal)

Pullulanases (microbial)

Type I specific for

 α -1,6 glycosidic bonds

Type II specific for α -1,6 and α -1,4 glycosidic bonds

Aureobasidium pullulans

Yeast like fungus

Transferase activity

- 1. Glycosidases in general
- 2. Amylomaltase (EC 2.4.1.25, forming α-1,4 bonds)
- 3. Branching enzyme (EC 2.4.1.18, forming α-1,6 bonds
- 4. Cyclodextrin glycosyltransferase, (EC 2.4.1.19) *B.macerans*

Fig. 1. Structure and properties of cyclodextrins. (a) α_{γ} , β_{γ} , and γ_{γ} -cyclodextrins; (b) three-dimensional form and properties of cyclodextrins (for sizes of A and B, see Table 1); (c) formation of inclusion complex of a cyclodextrin with a hydrophybic molecule. (Reproduced from Penninga [139].)

Effect of cyclodextrins on the incorporated molecules:

Stabilisation

Lower volatility

Change of chemical reactivity

Increased solubility

Change of sensoric properties

Application:

Analytical chemistry

Production of pharmaceuticals (prolonged effect)

Food industry (additives, aromas etc..

Cosmetics

Reaction catalyzed by CGTase

Enzymes degrading polysaccharides of the plant cell walls Components of the plant cell walls: Rhamnogalacturonan I Hemicelluloses Pectins (a pectin) Cellulose microfibril Middle lamella Structural protein Pectin Primary cell wall Cellulose Hemicelluloses Pectin Cellulose

Structural protein - extensin

Hemicellulose

Plasma membrane

Pectic compounds – structure:

- 1. Homopolygalacturonan
- 2. Rhamnogalacturonan I
- 3. Rhamnogalacturonan II

Homogalacturonan (HG) - linear galacturonic acids,

- α -1,4- bonds
- ~ 200 monosacch.units

Partially esterified

Rhamnogalacturonan I - branched, backbone [\rightarrow 4)- α -D-Gal*p*A-(1 \rightarrow 2)- α -L-Rha*p*-(1 \rightarrow] Branching on C4 Rha

Rhamnogalacturonan II, branched

Backbone: polygalA, 4 types of side chains

Kdo = 3-deoxy-D-manno-octulosonic acid

Pectine structure

Mh:

Apples, lemon: 200 - 300 kDaPairs, plums:25 -35 kDaOranges:40 - 50 kDaSugar beet:40 - 50 kDa

Pectic compounds - classification (in food industry)

- 1. Protopectin insoluble in water, present in the intact tissue (non-ripened fruit), limit hydrolysis leads to pectin and pectic acid
- 2. Pectinic acid polygalcturonan with the degree of esterification less than 75%
- 3. Pectin polymethylgalacturonan, at least 75% of carboxylic groups are esterified
- 4. Pectic acid soluble homopolygalacturonan, practically non esterified

Fruit ripening

Reactions catalyzed by pectolytic enzymes

Degradation of pectic compounds is functional in physiological processes – most important is fruit ripening

Endo-, exo-

favoured substrates: PMG- Polymethylgalacturonan, PG -polygalacturonan -

Depolymerazing enzymes

- Polygalacturonases (according to preferred substrate pectin resp. pectic acid)
- pH-optimum 4-5

Endopolygalacturonases

Decrease of viscosity

higher oligogalacturonides

x exopolygalacturonases
digalacturonic acid (bacterial)
galacturonic acid (fungal)
able to cleave digalacturonans

2. Lyases pH optimum 8 - 9 fungal, bacterial, plant Activity determination: ΔA_{235} Substrate – highly esterified pectin Pectin esterases

Specificity: D-methylgalacturonans, free carboxyl in the vicinity

Basic (pH optimum 7 - 8)

- plant
- microbial
- fungal

Х

deesterification in blocs

Inhibited by reaction product (pectic acid)

deesterification proseeds statistically

Acidic (pH optimum 4 - 6)

- fungal

Esterases don't decrease the viscosity of pectins in solution, on the contrary increase of viscosity in the presence of Ca²⁺ occurs

Cellulose structure

Cellobiose - structural unit

BIOL

Celulolytic enzymes

multicomponent enzyme system:

glycoprotein

2 domains: catalytic + binding

Current model for enzymatic degradation of cellulose

Main producer : Trichoderma reesei

Problem: glucose and cellobiose are inhibitors of cellulase system

Hemicelluloses

(soluble in diluted alkali)

Hemicelullases

β-galactosidase - (EC 3.2.1.23)

Lactose — D-galactose + D-glucose

Sources: bacteria, fungi, yeasts Fungal: - acid pH 2,4 - 5,4, 50°C Psychrophilic microorganisms

Degradation of lactose in milk products Transglycosylation reaction - biotransformations

Lipases

TAG
$$\rightarrow$$
 DAG (1,2 or 1,3) \rightarrow MAG \rightarrow FA + glycerol

Animal, plant, microbial

```
Active on the oil-water interface (CMC – critical micelle concentration)
```

mechanism - catalytic triad similar to the serin proteases

Substrate concentration

Highly stereospecific (biotransformations)

Very low specificity to FA and position of ester bond in triacyl glycerol

Some bacterial lipases specific for position 2

Reactions catalysed by lipases

Alcoholysis :

$$R_1$$
-C-OR₂ + R_3 -OH ----- R_1 -C-OR₃ + R_2 -OH
O O

<u>Aminolysis :</u>

$$R_1$$
-C-OR₂ + R_3 -NH₂ - R_1 -C-NHR₃ + R_2 -OH
O O

Phospholipases

Animal, plant, microbial

Reaction products: PLD: PA + polar head PI-PLC: DAG + IP₃ PC-PLC: DAG + P-Cho PLA: FA + lysoPL

PA – low solubility, oil spoilage lysoPL - surfactants Transphosphatidylation reaction of PLD

