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The state of a molecular system can be described in terms of collective variables. These

low-dimensional descriptors of molecular structure can be used to monitor the state

of the simulation, to calculate free energy profiles or to accelerate rare events by a

bias potential or a bias force. Frequent calculation of some complex collective variables

may slow down the simulation or analysis of trajectories. Moreover, many collective

variables cannot be explicitly calculated for newly sampled structures. In order to address

this problem, we developed a new package called anncolvar. This package makes it

possible to build and train an artificial neural network model that approximates a collective

variable. It can be used to generate an input for the open-source enhanced sampling

simulation PLUMED package, so the collective variable can be monitored and biased

by methods available in this program. The computational efficiency and the accuracy

of anncolvar are demonstrated on selected molecular systems (cyclooctane derivative,

Trp-cage miniprotein) and selected collective variables (Isomap, molecular surface area).

Keywords: metadynamics, neural networks, molecular dynamics simulation, collective variables, free energy

simulations

INTRODUCTION

Molecular dynamics simulation makes it possible to simulate any molecular process at the atomic
level. In principle, structural and thermodynamical properties of a protein can be predicted by
simulation of its folding and unfolding. Similarly, structure and stability of a protein-ligand
complex can be predicted by simulation of binding and unbinding. Unfortunately, many molecular
processes either cannot be simulated or their simulation is far from routine due to enormous
computational costs of the molecular dynamics simulation method.

Several enhanced sampling methods have been developed in order to address this problem
(Spiwok et al., 2015a). Some of these methods, such as umbrella sampling (Torrie and Valleau,
1977) or metadynamics (Laio and Parrinello, 2002), use a bias potential or a bias force to destabilize
frequently sampled states and to enhance sampling of poorly sampled states. Tempering methods
enhance sampling by means of elevated temperature (Abrams and Bussi, 2014). There are methods
combining tempering and biasing as well as methods based on completely different principles.
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Biased simulations usually require one or more preselected
degrees of freedom on which the bias force or potential is
applied. These degrees of freedom are referred to as collective
variables (CVs). There are two technical prerequisites for CVs
to be applicable in biased simulations. Firstly, a CV must be a
function of atomic coordinates of the molecular system, i.e., it
must be possible to calculate the value of a CV at every step
of the simulation solely from atomic coordinates. Secondly, it
must be possible to convert the force acting on the CV into
forces acting on individual atoms, i.e., it must be possible to
calculate the first derivative of the CV with respect to atomic
Cartesian coordinates. Beside these technical prerequisites, in
order to efficiently enhance sampling it is necessary to cover all
slow motions in the molecular systems by few CVs.

There are many promising CVs that do not fulfill these
requirements and therefore cannot be directly used in biased
simulations. These include, for example, the results of non-
linear dimensionality reduction methods (Das et al., 2006).
There are examples of other CVs that fulfill these requirements;
however, their calculation is computationally expensive. In order
to make biased simulation with these CVs possible, we and
others introduced approximations tailored for biased simulations
(Branduardi et al., 2007; Spiwok and Králová, 2011; Spiwok et al.,
2015b; Pazúriková et al., 2017).

Recent development of neural network algorithms allows
the usage of artificial neural networks for the purpose of CV
approximation. The advantage of neural networks is the fact
that many of them are trained by the backpropagation algorithm
(Goodfellow et al., 2016), which requires easy calculation of the
derivatives of the output with respect to the input. This is exactly
what is needed to convert forces acting on a CV into forces acting
on atoms. Application of neural network models may also benefit
from the current development of neural networks, which has lead
to a number of new toolkits and programs.

Multiple recent studies have tested machine learning
approaches to design collective variables for biased simulation
to study thermodynamics and kinetics of molecular transitions
(Galvelis and Sugita, 2017; Chen and Ferguson, 2018; Guo et al.,
2018; Mardt et al., 2018; Pérez et al., 2018; Seo et al., 2018; Sultan
and Pande, 2018; Wehmeyer and Noé, 2018). In this work we
describe a new tool anncolvar for approximation of an arbitrary
CV. Its function is outlined in Figure 1. This tool requires a set
of structures, either a simulation trajectory or any other set of
structures. For the sake of simplicity we will call this set a training
trajectory. It must be accompanied with precomputed values of
CVs. These data are used to train a simple neural network to
approximate the value of CVs for other out-of-sample structures.
It generates an input to a popular enhanced sampling program
PLUMED (Bonomi et al., 2009; Tribello et al., 2014). The CV
approximated by anncolvar can be calculated a posteriori for
any 3D structure or trajectory. Furthermore, it can be used in
metadynamics or other enhanced sampling methods available in
PLUMED. This approach was tested on conformational changes
of a cyclooctane derivative and Trp-cage mini-protein folding.
Isomap (Tenenbaum et al., 2000) low-dimensional embeddings
used as CVs in the metadynamics simulation of the former
system represent CVs that cannot be calculated explicitly from

Cartesian coordinates. Solvent-accessible surface area (SASA)
used as a CV in simulations of the later system represents a CV
that can be calculated explicitly from Cartesian coordinates, but
such calculation is slow.

The program can be accessed for free at https://github.com/
spiwokv/anncolvar or via PyPI.

METHODS

Use of Anncolvar
The program anncolvar is written in Python and uses packages
mdtraj (McGibbon et al., 2015), numpy (Oliphant, 2006) and
keras (Cholet, 2018)1. The machine learning package keras runs
on top of one of three machine learning backends, namely
TensorFlow, Theano or CNTK. Before installation of anncolvar
it is necessary to install one of these backends. The package
anncolvar was tested with TensorFlow on a laptop, personal
computer and HPC cluster, with Theano on HPC cluster and
with all three backends in continuous integration environment
Travis-CI. Installation of other libraries may be required in order
to enable use of GPU acceleration on GPU-equipped computers.
Additionally, one needs to install Python (Python 2.7 and Python
3.6 were tested) and package management library PyPI.

Once the backend is installed, anncolvar can be installed
by typing:
pip install numpy cython

pip install anncolvar

(or with sudo, depending on user rights and type of installation).
PyPI installs all required python libraries. Successful installation
can be checked by typing:
anncolvar -h

to print help. Anncolvar can be also installed from Anaconda
Cloud (https://anaconda.org/spiwokv/anncolvar).

The program anncolvar is written in a way so that it requires
a preprepared reference structure and a training trajectory. The
reference structure is a single structure of the molecular system
in PDB format. It is used as a template for RMSD fitting in order
to remove translational and rotational motions. Furthermore,
input data for artificial neural networks are typically scaled to lie
between 0 and 1. The reference structure is used in this process.
It must be prepared to fulfill following requirements:

1. It may contain only atoms intended for the analysis. Atoms
not intended for the analysis, such as hydrogen atoms, must
be deleted. The program anncolvar does not ask which atoms
are to be analyzed and which are not. Numbering of atoms
should not be changed by deletion of unwanted atoms, e.g., if
atoms 2, 3, 5, 6, 8, etc. are deleted, the remaining atoms must
be numbered 1, 4, 7, etc., not 1, 2, 3, etc.

2. It must be centered in a reasonably large box with coordinates
of one corner set to [0,0,0] and the diagonal corner set to [lx,
ly, lz] (cubic boxes were used in this work). The size of the
box must be sufficient to accommodate the analyzed molecule
in all snapshots of the simulation (the program returns an
error message if this fails). In the preprocessing step done by

1Cholet, F., and co-workers, https://keras.io, 2019.
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FIGURE 1 | Schematic representation of anncolvar function. Three input files are needed for training: (i). reference structure (in PDB) of the molecule located in the

center of box with one corner with coordinates [0, 0, 0] and size of [lx , ly , lz ], (ii) training trajectory (without molecules broken by periodic boundary condition) and, (iii)

file containing precomputed values of the CV for each snapshot of the training trajectory. The program generates the input file for PLUMED. In PLUMED the molecule

is fit to the template (reference structure) and the CV is calculated by neural network.

anncolvar the coordinates are fitted to the reference structure
and then divided by lx, ly and lz to lie between 0 and 1. The
reference structure can be generated, for example, in Gromacs
by a command:

gmx editconf -f input.pdb -o reference.pdb

-box 6 6 6 -c

for a box with lx = ly = lz = 6 nm. The values of lx, ly and lz
must be specified by options -boxx, -boxy and -boxz.

The training trajectory must be prepared to fulfill
following requirements:

1. It may contain only atoms intended for the analysis, i.e., the
same atoms as in the reference structure.

2. The molecule must not be broken due to periodic
boundary condition.

Fitting to a template is done by mdtraj library in anncolvar. For
special fitting protocols it is possible to fit the training trajectory
before running anncolvar and switch off fitting in anncolvar by
-nofit option.

Finally, the program requires a set of precalculated values of
collective variables for each snapshot of the training trajectory
(option -c). This must be a space-separated file with a column
containing values of the CV in the order of snapshots in the
training trajectory. The index of the column can be specified by
-col (e.g., -col 2 for the second column).

The program makes it possible to modify the design of
the neural network, namely the number of hidden layers

(1, 2, or 3 is supported), activation functions in each layer
(keras activation functions are supported), and the details
of optimization (loss function, batch size and optimization
algorithm). The results are written to a text output file
for easy visualization of the correlation between original
and predicted CV values. This output file controlled by -o

option contains predicted and original values in the first and
the second column, respectively. The third column indicates
whether the value was used in the training (TR) or test (TE)
set. Stratification of data into the training and test sets is
controlled by -test (size of test set) and -shuffle (whether
snapshots of the trajectory are or are not shuffled before
the stratification).

Input file for the PLUMED open-source library for analyzing
and biasing molecular dynamics simulations (Tribello et al.,
2014) is also provided (-plumed option). This file (default
name plumed.dat) makes it possible without much changes
to calculate the CV for a trajectory (by PLUMED driver)
or to monitor the value of the CV during a simulation.
Application of the output PLUMED file in metadynamics
or other enhanced sampling method supported by PLUMED
requires minor changes easy for an experienced PLUMED
user. In case the training trajectory and the biased simulation
use a different atom numbering, it is necessary to renumber
atoms in the PLUMED input file. The reference file is used
as a template for fitting of the molecule in order to remove
rotational and translational degrees of freedom. It may be

Frontiers in Molecular Biosciences | www.frontiersin.org 3 April 2019 | Volume 6 | Article 25

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Trapl et al. Collective Variables by Neural Networks

necessary to modify the PDB format to fulfill the requirements
of PLUMED.

Proper function of anncolvar can be checked by recalculation
of the CV in the training trajectory using plumed driver utility
followed by comparison with the text output of anncolvar.

A sample training may be executed by:
anncolvar -i traj.xtc -p reference.pdb -c

results_isomap -col 2 \

-boxx 1 -boxy 1 -boxz 1 -layers 1 -layer1

64 -epochs 2000 \

-o corr1.txt -plumed plumed1.dat

This carries out 2,000 epochs of training on an artificial neural
network with the training trajectory in traj.xtc (Gromacs format),
reference structure in reference.pdb and precalculated CV values
in results_isomap (in the second column). The artificial neural
network was composed of one hidden layer with 64 neurons with
sigmoid (default) activation function.

Simulation Details
All simulations were carried out in Gromacs 5.1.1 (Abraham
et al., 2015) with PLUMED 2.4 (Tribello et al., 2014).

Cyclooctane derivative (trans,trans-1,2,4-
trifluorocyclooctane) was simulated as described elsewhere
(Spiwok and Králová, 2011). Briefly, it was simulated in General
AMBER force field (Wang et al., 2004) in vacuum using
stochastic dynamics integrator with 1 fs step and without
constraints. Temperature was kept constant at 300K using
Parrinello-Bussi thermostat (Bussi et al., 2007). Electrostatics was
modeled without cut-off. The set of 8,375 reference structures
was kindly provided by Brown and co-workers (Brown et al.,
2008). They were generated by Brown and co-workers using
a systematic generation algorithm as described in their work
(Brown et al., 2008).

Trp-cage was modeled using Amber99SB-ILDN (Lindorff-
Larsen et al., 2010) force field. The protein was placed in a
periodic box of size 7× 7× 7 nm (metadynamics, MTD) or 3.548
× 3.896 × 3.389 nm (parallel tempering metadynamics, PT-
MTD) containing 11,128 (MTD) (Laio and Parrinello, 2002) or
1,366 (PT-METAD) (Bussi et al., 2006) water molecules and one
chloride anion. Step of molecular dynamics simulation was set to
2 fs. All bonds were constrained. Electrostatics was modeled by
Particle-mesh Ewald method (Darden et al., 1993). Temperature
was kept constant using Parrinello-Bussi thermostat
(Bussi et al., 2007).

For MTD, the system was minimized by steepest descent
algorithm. This was followed by 100 ps simulation in NVT and
100 ps simulation in NVT ensemble. This was followed by 100 ns
well tempered metadynamics (Barducci et al., 2008) at 300 K.

For PT-MTD, the system was minimized by steepest descent
algorithm. This was followed by 100 ps simulation in NVT
and 100 ps simulation in NVT ensemble. The system was
preequilibrated by 500 ps NVT simulations at 32 temperatures:
278.0, 287.0, 295.0, 303.0, 312.0, 321.0, 329.0, 338.0, 346.0,
355.0, 365.0, 375.0, 385.0, 396.0, 406.0, 416.0, 427.0, 437.0, 448.0,
459.0, 470.0, 482.0, 493.0, 505.0, 517.0, 528.0, 539.0, 551.0, 562.0,
573.0, 584.0, and 595.0 K. After that PT-METAD was performed

at same temperatures. Replica exchange attempts were made
every picosecond.

Trajectory of 208µs simulation of Trp-cage folding/unfolding
was kindly provided by D. E. Shaw Research (Darden et al., 1993).
It was converted to Gromacs format and prepared by Gromacs
tools for analysis in anncolvar.

RESULTS AND DISCUSSIONS

Cyclooctane Derivative Conformational
Transitions
Cyclooctane non-symmetric derivative (trans,trans-1,2,4-
trifluorocyclooctane) was introduced as a model molecular
system by Brown and co-workers (Brown et al., 2008; Martin
et al., 2010). They generated more than one million of
conformations of this molecule by a systematic geometry-based
algorithm. Then they filtered this set to obtain a set of 8,375
non-redundant structures. These structures were analyzed by a
non-linear dimensionality method Isomap (Tenenbaum et al.,
2000). Brown and co-workers demonstrated that it is possible
to describe conformation of the model molecule using just
three low-dimensional Isomap embeddings (see Figure 2A

for the reproduction of the results of Brown and co-workers)
(Brown et al., 2008).

It is very challenging to use low-dimensional embeddings
as CVs in biased simulations. For this, it is necessary to
calculate a low-dimensional embedding for a new out-of-sample
structure. Furthermore, in order to apply biasing forces on a
molecular structure it is necessary to calculate derivatives of
the low-dimensional embedding with respect to the Cartesian
coordinates. Unfortunately, using Isomap and most other non-
linear methods it is not possible to directly calculate neither
low dimensional embeddings for a new out-of-sample structure,
nor their derivatives. For this purpose we have tested the
Property Map Collective Variables (Spiwok and Králová, 2011),
an extension of Path Collective Variables (Branduardi et al.,
2007). An interesting alternative is application of autoencoders
recently used by Chen and Ferguson (2018).

Here we test an artificial neural network performed by
anncolvar to approximate Isomap embeddings. The set of
8,375 structures provided by Brown et al. (2008) was analyzed
by Isomap to obtain three low-dimensional embeddings
(Figure 2A). Next we use them to train a neural network to
approximate these embeddings. Briefly, we used the command:
anncolvar -i traj_fit.xtc -p

reference.pdb \

-c results_isomap -col 2 \

-boxx 1 -boxy 1 -boxz 1 \

-layers 3 -layer1 8 -layer2 8 -layer3 8 \

-actfun1 sigmoid -actfun2 sigmoid

-actfun3 sigmoid \

-optim adam -loss mean_squared_error \

-epochs 1000 -batch 256 \

-o low1.txt -plumed plumed1.dat

The set of 8,375 structures was stored in Gromacs format
in traj_fit.xtc. A reference structure was stored in the file
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FIGURE 2 | Three-dimensional Isomap embeddings of trans,trans-1,2,4-trifluorocyclooctane (A) and its approximation using anncolvar (B). Isomap embeddings in

(A) and (B) were rotated by angle [0.00 rad, 2.40 rad, −0.55 rad] for better clarity. Training set points are in gray, test set points are in different colors depending on

whether they were used to train Isomap embedding 1, 2, or 3. Comparison of Isomap embeddings 1 (C), 2 (D), and 3 (E) original (horizontal) vs. approximated by

anncolvar (vertical). Training set points are in black, test set points are in red. Distribution of differences between original and predicted CVs can be found in Figure S1.

reference.pdb. It was centered in the cubic box of size 1 nm with
the corners at [0,0,0], [0,0,1], . . . [1,1,1] (in nm). Isomap low-
dimensional embeddings were stored in the file results_isomap
(space-separated, with structure ID and Isomap embedding 1, 2,
and 3 in each column). This carried out 1,000 epochs of training
(ADAM optimizer, mean square error loss function) of a network
composed of an input layer with 72 neurons (for Cartesian
coordinates of 24 atoms) and three hidden layers, each with
eight neurons with the sigmoid activation function. By default,
10% of randomly selected structures are used as the test set and
remaining as the training set.

This was repeated for the second and third Isomap
coordinates (with -col 3 and 4, respectively). The resulting
PLUMED input files were combined manually to one PLUMED
input file. It was also necessary to renumber atoms due to a
different numbering in the original data set and used force field.

There were visible differences between original Isomap
embeddings and values approximated by anncolvar (Figure 2),
nevertheless, these differences do not affect the functionality
of embeddings. Pearson correlations of original and anncolvar-
predicted Isomap low-dimensional embeddings were higher than
0.997. There was no significant difference between correlations in
the training and test sets.

Next, the PLUMED input file was edited to enable
metadynamics (Laio and Parrinello, 2002) with all three Isomap
embeddings used as CVs. Hills were added every 1 ps with
constant height of 0.2 kJ·mol−1 and width 0.02 (for all three
Isomap CVs). The results of 100 ns metadynamics are depicted
in Figure 3. The simulation started from one of boat-chair
conformation located in the central “hourglass.” After ∼20 ns

all eight boat-chair conformations were flooded and the system
started to explore one of boat conformations at the “equator.”
After ∼30 ns it started to explore the crown conformation at
the “south pole.” At time ∼50 ns also the inverted crown at the
“north pole” was sampled. The convergence was assessed as the
evolution of free energy difference between crown and boat-chair
(see Figure S2). The free energy surface was visualized by Mayavi
(Ramachandran and Varoquaux, 2011) and PoVRay (Persistence
of Vision, 2018)2. The resulting free energy surface (Figure 3B)
is in good agreement with the results of our previous studies
(Spiwok and Králová, 2011; Pazúriková et al., 2017).

Trp-Cage Folding
Intuitively solvent-accessible surface area (SASA) of a protein
is likely to be an interesting CV for protein folding simulation,
because SASA of a protein in the folded state is likely to be smaller
than for the unfolded state, which is one of requirements for a CV
to be successful. For this purpose we used a 208-µs trajectory of
Trp-cage miniprotein kindly provided by D. E. Shaw Research
(Lindorff-Larsen et al., 2011). We admit that this is not solution
to the “chicken-and-egg problem” [as discussed by (Chen and
Ferguson, 2018)], because we cannot train the neural network
without a long simulation trajectory with folding and unfolding
events. Reinforcement learning (Nandy and Biswas, 2018)may be
solution to this problem, but it is out of scope of this manuscript.

The trajectory provided by D. E. Shaw Research was converted
to Gromacs format and SASA was calculated for 1,044,000
frames using gmx sasa tool from the Gromacs package (Abraham

2Persistence of Vision Pty. Ltd., http://www.povray.org, 2018.
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FIGURE 3 | Sampling of CVs in 100 ns metadynamics with Isomap low-dimensional embeddings calculated by anncolvar (A). Free energy surface depicted as an

isosurface (in violet) at + 30 kJ·mol−1 (relative to the global free energy minimum) (B). Isomap embeddings were rotated by angle [0.00 rad, 2.40 rad, −0.55 rad] for

better clarity.

FIGURE 4 | Comparison of SASA calculated by gmx sasa (horizontal) and

predicted by anncolvar (vertical). The line shows the diagonal (y = x).

et al., 2015). Next, a neural network was trained in anncolvar
to approximate SASA. It contained 432 neurons in the input
layer (for coordinates of 144 atoms placed in a cubic box of size
6 nm) and one hidden layer with 32 sigmoid neurons. The set
of 10% of randomly selected structures was used as the test set
and remaining as the training set. This provided a good 0.976
correlation (Pearson) between SASA calculated by gmx sasa and
predicted by anncolvar (Figure 4).

We also examined the effect of training set size on anncolvar
performance. The observed effect was small. The Pearson
correlation coefficient for reference and predicted values ranged
from 0.9750 (50% of trajectory frames used) to 0.9756 (90% of
trajectory frames used), both using 1,000 epochs. We also tested

training using a sub-optimal training set. Unfolded structures
(RMSD form NMR structure >0.25 nm on all atoms, 879,759
structures) were selected from the trajectory and used as a
training set. The resulting neural network predicts SASA with
relatively good accuracy (Pearson correlation coefficient 0.96
for all structures and 0.77 for folded structures, see Figure S7).
We plan to test anncolvar trained on sub-optimal training sets
in future.

In order to evaluate performance of anncolvar we decided
to estimate costs of SASA calculation by conventional program
(gmx sasa from Gromacs package) and to compare it with
anncolvar. The program gmx sasa calculates SASA of Trp-cage in
approximately one millisecond. This corresponds to reasonably
good performance of ∼0.6 s/ps or 10 min/ns. However, for
biasing it is necessary to calculate not only SASA, but also
its derivatives dSASA/dx. Methods for calculation of analytical
surface derivatives have been reported in literature (Sridharan
et al., 1995), but their implementation into available simulation
packages would require intensive coding. In order to use
numerical derivatives it would be necessary to evaluate delta
SASA for incremental changes 1r of all coordinates of all atoms.
This would downgrade performance to ∼days/ns. There are
approaches that can be applied to address this problem, such as
evaluation of CVs in multiple time steps (Ferrarotti et al., 2015),
parallelization or GPU offloading. However, all these approaches
either require intensive changes in a code or they may have
other disadvantages.

The PLUMED input file was used to drivemetadynamics (Laio
and Parrinello, 2002) and parallel tempering metadynamics (PT-
METAD) (Bussi et al., 2006) with SASA as a collective variable.
Similarly to cyclooctane derivative it was necessary to manually
edit plumed.dat file because of different atom numbering in
the D. E. Shaw Research data set and the force field we used.
Since formation of secondary structure is very important and
potentially the slow step of Trp-cage folding, another CV was
used to enhance formation of secondary structure. We selected
an alpha helical content of a protein structure (ALPHARMSD)
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FIGURE 5 | Free energy surfaces of Trp-cage calculated by PT-METAD with SASA and Alpha RMSD collective variables at four selected temperatures.

(Pietrucci and Laio, 2009) collective variable with parameters
set to default in PLUMED. Well-tempered metadynamics was
performed with hills of height 1 kJ·mol−1 added every 1 ps
with hill widths 1 nm2 for SASA and 1 for ALPHARMSD,
respectively. Bias factor of well-tempered metadynamics was set
to 15 (Barducci et al., 2008). Unfortunately, 100 ns metadynamics
starting from the folded structure lead to quick unfolding but not
to folding (see Supporting Information, Figure S3).

Therefore, in order to enhance sampling in degrees of
freedom that cannot be addressed by the applied CVs we
replaced metadynamics by PT-METAD (Bussi et al., 2006).
The system was simulated at 32 temperatures ranging from
278.0 to 595.0 K. Metadynamics parameters were not changed.
The plot in Figure S4 demonstrated significant overlap of
potential energy histograms, which is a prerequisite for a
reasonable replica exchange rate. During a PT-METAD (50 ns
in each replica) we observed eight folding events (recognized

by visual inspection of “demuxed” trajectories, see Supporting
Information, Figure S5). This is in contrast to a parallel
tempering molecular dynamics simulation with otherwise same
parameters (without metadynamics), where no folding events
were observed.

The size of box in PT-METAD was small to increase replica
exchange probability and thus to reduce required number of
replicas. We admit that this increases risk of self-interaction
artifacts in folding simulations. We visually examined folding
simulation trajectories and discovered examples of self-
interactions (see Figure S6). These interactions were relatively
short-living. Moreover, we believe that self-interactions
complicate, not facilitate, folding. Therefore, neural network
approximated SASA can be seen as a successful CV.

Free energy surfaces were calculated from Gaussian hills
accumulated at each temperature in PT-METAD (Figure 5).
Free energy surfaces are in a good agreement with the
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results from literature (Lindorff-Larsen et al., 2011). At
low temperatures there were two free energy minima with
approximately same value of free energy. One at CVs [∼17
nm2, ∼6] corresponds to the folded structure. The second
one at CVs [∼21 nm2, ∼0.5] corresponds to the unfolded
structure. The fact that both minima have approximately
same free energy value is in agreement with the fact that
in an unbiased simulation (Lindorff-Larsen et al., 2011) the
system spends approximately same time in unfolded and
folded state. At slightly elevated temperatures the minimum
corresponding to the folded state becomes more shallow
and at high temperature it becomes almost indistinguishable.
Other states, such as those with higher helical content or
low-SASA states with low helical content, were predicted as
energetically unfavorable.

One of the motivations for development of anncolvar was
the potential speed gain compared to Path Collective Variables
and Property Map. These two approaches require multiple
RMSD-fitting processes in each step. This problem has been
addressed by Close Structure algorithm (Pazúriková et al., 2017),
which reduces the number of RMSD-fitting processes, but still
requires multiple RMSD-fitting processes in some steps of the
simulation. The approach presented here requires only one
RMSD-fitting in each step. RMSD-fitting free approaches (such
as those using interatomic distances) are not supported by
anncolvar, but can be used in future if it turns out to be a
viable strategy.

For the cyclooctane derivative, metadynamics was
significantly slower than unbiased simulation (∼40 ns·day−1

vs. ∼7 µs·day−1 on single CPU). However, this can be
explained by the fact that not only CV calculation, but
also calculation of the bias potential takes large proportion
of CPU load in the system much smaller (24 atoms) than
biomolecular systems with explicit solvents. On the other
hand, the situation was much more favorable in biomolecular
systems with an explicit solvent. Metadynamics (Trp-cage
with 11,128 water and one chloride) was approximately twice
slower than corresponding unbiased simulation (both on 8
CPU cores). Examination of one part (5 ns) of metadynamics
simulation revealed that metadynamics force calculation
accounts for 78% of total force calculations and 59% of total
calculations. Similarly PT-METAD (Trp-cage with 1,366 waters
and one chloride) was also approximately twice slower than
corresponding unbiased parallel tempering simulation (both on
32 CPU cores).

Neural networks architectures used in this study were
relatively small to avoid slowing down of simulations. They
are not deep enough to be called deep learning. There are
several options to improve the program in order to enable
deeper neural network models. For example, we plan to enable
loading of weights and biases into PLUMED as text files.

This would also simplify file handling. There is also space for
parallelization and GPU offloading. We plan to work on this in
near future.

In this work we used two different data sets to train the neural
network. The first was generated by a systematic conformer
generation. The second was generated by a long molecular
dynamics simulation. Both approaches require that the structure
corresponding to the free energy minimum is present in the
training data set. This leads to the “chicken-and-egg problem”
discussed by Chen and Ferguson (Chen and Ferguson, 2018).
We have to know the structure of folded protein (or at least it
must be present in the training data set without knowing that
it is the folded one) in order to simulate folding of the protein.
Therefore, the approach outlined in this work is suitable to study
protein folding mechanisms with known folded structure, but
it is not suitable for de novo structure prediction. Generative
machine learning models, which involve models that can make
accurate prediction outside the training set as they learn a
broad distribution of the training set, may be useful to address
this problem. Reinforcement learning can be another answer to
this problem.
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