Gradient Operation in HPLC

Dr. Shulamit Levin Medtechnica levins@medtechnica.co.il

http://www.forumsci.co.il/HPLC http://shulalevin.tripod.com

Gradient Operation in HPLC

Dr. Shulamit Levin Medtechnica levins@medtechnica.co.il

http://www.forumsci.co.il/HPLC http://shulalevin.tripod.com

Introduction - Optimizing Gradient Separations

The following diagram illustrates the cycle time parameters that are used in a typical gradient

Outline

Introduction

- Strategies for Higher Throughput Gradient Separations to Achieve Maximum Throughput and Optimal Resolution
 - system solutions
 - method solutions

Typical Problems Encountered in Gradient Chromatography

- Non-reproducible retention times
- Difficulties to transfer from analytical to narrowbore columns
- Long reequilibration times
- Long cycle times (injection to injection)

More efficient analyses desired

Introduction - Options to Improve Sample Throughput

System Solutions:

- Reduce Gradient Delay Volume
- Decrease Re-equilibration time
- Reduce Injection Cycle time
- Modify Instrument
- Use Multiple Parallel Columns
- Adjust Detector Sampling Rate

- Method Solutions:
 - Use Shorter Gradients
 - Use Higher Flow Rates
 - Use Shorter Columns
 - Use a Smaller Particle Size
 - Decrease Re-equilibration Time
 - ► Increase Temperature

Outline

Introduction

- Strategies for Higher Throughput Gradient Separations to Achieve Maximum Throughput and Optimal Resolution
 - ► system solutions
 - -reduce gradient delay volume
 - -decrease re-equilibration time
 - -reduce injection cycle time
 - method solutions

Initial Separation and Conditions

Test Probe Structures

1-hydroxy-7-aza-benzotriazole

0

4-methylbenzene sulfonamide

4-aminobenzophenone

H. Weller, Bristol-Myers Squibb Pharmaceutical Research Institute

Volumes in an HPLC System

Effect of Precolumn Volume

Reducing Delay Volume

Determination of System Precolumn Volume

- Definition: Delay volume is the volume of plumbing between the point the gradient is formed and the inlet of the column.

- System components affecting dwell volume:
 - -Pump
 - -Gradient Mixers
 - -Injector

Gradient Snape and Precolumn Volume

Outline

- Introduction
- Strategies for Higher Throughput Gradient Separations to Achieve Maximum Throughput and Optimal Resolution
 - ► system solutions
 - -reduce gradient delay volume
 - -decrease re-equilibration time
 - -reduce injection cycle time
 - method solutions

Calculation of Gradient Equilibration Volume

- Re-equilibration is a necessary part of gradient chromatography. Both the HPLC system and the column must be at initial conditions at the beginning of each run to ensure reproducible chromatographic separations.
- The re-equilibration volume can be divided into two parts, the system washout and the column re-equilibration.
- For good system/column equilibration

 $t_r = (3V_T + 5V_c)/F$

where: t_e is the re-equilibration time in minutes, V_τ is the total system volume, V_e is the column volume in mL F is the flowrate in mL/min. column volume = 0.7(πr₂L/2) system volume = 650-3000 μL

Gradient Shape and Re-equilibration

Column Re-equilibration

Reduction of Re-equilibration Tim

Reduction of Re-equilibration Time (Approach 1 - Increase flow rate)

Reduction of Re-equilibration Time

(Approach 1 - Increase Flow Rate)

Reduction of Re-equilibration Time

(Approach 2 - Reduce Column Volume)

Column: 2.1 X 50 mm

Column volume (c.v.) = 0.170 mL5 minute gradient @ 1 mL/min instrument delay volume (d.v.) = 650 µL gradient volume = t $_{g}$ x c.v. = 0.85

Total re-equilibration time, t , = $\{3(0.65) + 5(0.7)(0.17)\}/1$ = 2.5 min,

Column: 2.1 X 20 mm

Column volume (c.v.) = 0.069 mL5 minute gradient @ 1 mL/min instrument delay volume (d.v.) = 650 µL gradient volume = t $_{0} x c.v. = 0.35$

Total re-equilibration time, t , $= \{3(0.65) + 5(0.7)(0.069)\}/1$ = 2.0 min.

re-equilibration time is reduced by 20%

Reduction of Re-equilibration

Time (Approach 2 - Reduce Column Volume)

Reducing Total Cycle Time

- Reduce Cycle Times by:
 - Programming a system purge in the method which occurs during the injection of the sample or...
 - Employing two columns and performing column switching.

Outline

Introduction

- Strategies for Higher Throughput Gradient Separations to Achieve Maximum Throughput and Optimal Resolution
 - ►system solutions
 - reduce gradient delay volume
 - -decrease re-equilibration time
 - -reduce injection cycle time
 - method solutions

Shorter Cycle Time

Higher Throughput Through Column Switching

Column: Symmetry®, C¹⁸, 5 µL, 19 X 50 mm Flow Rate: 20 mL/min. Re-equilibration requires 5 column volumes = 150 mL = 7.5 min. Re-equilibration period = unused time

Column switching can reduce runtimes by approx. 30%

Note: a second pump must be employed

Summary - System Solutions (cont'd)

- Achieve Faster Gradient Chromatography By...
 - Reducing Re-equilibration Time
 - Reduce column volume
 - Increase flow rate

Reducing Cycle Time

- -Program injection to occur during re-equilibration
- -Implement column switching

Summary - System Solutions

- Reducing Gradient Delay Volume
 - Use 0.12 mm (0.005") i.d. tubing instead of 0.25 mm (0.009") to reduce system volume;
 - -Shorten all tubing lengths;
 - Reduce the extra-column volume in the auto-injector by employing a smaller loop
 - -Remove gradient mixers

Outline

- Introduction
- Strategies for Higher Throughput Gradient Separations to achieve maximum throughput and maximize resolution
 - system solutions
 - method solutions
 - -use shorter gradients
 - -use higher flow rates
 - -use shorter columns
 - -use smaller particle sizes
 - -increase temperature

Optimizing Separations

The following diagram illustrates the cycle time parameters that were optimized to achieve high throughput goals.

what Factors innuence Gradient **RP-HPLC Separations...**

...further derivatization of this term shows the relationship between resolution and flow rate, F, and column length, L, or column volume, $\pi r_2 L/2$.

Dr. Shulamit Levin, Medtechnica

Factors Influencing Resolution in Gradient RP-HPLC Separations...

Resolution, Rs, between two closely resolved analytes in gradient RP-HPLC is a function of column efficiency N, selectivity a, and the retention factor:

• Upon substitution of the actual variables (Δ %/tg (gradient time)) for c, gradient slope, one can see the relationship between gradient time and resolution, and....

Resolution Dependance on Gradient Time and Flow Rate for a Gradient Method

(Symmetry® C18, 4.6 X 50 mm, 5 µm)

Rs

- 1. Effect of changing gradient run time, t_g
- 2. Effect of changing flow rate, F

Impact of Reducing Gradient Time (t₉) on Resolution

Conditions:

Column: Symmetry® C₁₀, 5 µm, 4.6 X 50 mm Mobile phase: A=0.1% TFA in water. B=0.1% TFA in acetonitrile Gradient: 0-60% B in noted gradient time Column temperature: 30.0 °C Flow rate: 1 mL/min. Detector: 254 nm Injection volume: 1 µL

-Longest gradient time provides best resolution

-Shortest gradient time maximizes throughput

-Reducing just gradient time sacrifices resolution

Summary -Impact of Gradient Time on Resolution

Resolution increases as gradient time increases

Throughput decreases as gradient time increases

Summary -Impact of Flow Rate on Resolution

- Resolution goes through an optimum due to the combination of gradient expansion and decrease in plate count
- Optimum resolution is approximately 1 to 2 mL/min for most practical separation problems

Impact of Flow Rate (F) on Resolution

Column: Symmetry® C₁₁, 5 µm, 4.6 X Mobile phase: A=0.1% TFA in water. B=0.1% TFA in acetonitrile Gradient: 0-60% B in 4 minutes Column temperature: 30.0 °C Injection volume: 1 µL

- Resolution goes through an optimum due to the combination of gradient expansion and decrease in plate count

Resolution Dependance on both Flow Rate and Gradient Time for a Gradient Method

(Symmetry® C18, 4.6 X 50 mm, 5 μm)

Rs

3. Effect of changing gradient run time, t_{g} , and flow rate, F

Reduction of Cycle Time

Conditions:

Column: Symmetry® C₁₀, 5 µm, 4.6 X 50 mm Mobile phase: A=0.1% TFA in water, B=0.1% TFA in acetonitrile Column temperature: 30.0 °C Detector: 254 nm Injection volume: 1 µL

- Flow rate increased proportional to gradient time decrease.
- Elution pattern is maintained as cycle time is decreased resulting in an increase in throughput.

Summary -Reduction of Cycle Time

- To obtain the maximum sample throughput the gradient time must be adjusted inversely proportionally to the flow rate.
- As shown in the previous slide the sample throughput was increased by 800% upon increasing the flow rate to 5 mL/min. and reducing the gradient time to 2 minutes.

Outline

- Introduction
- Strategies for Higher Throughput Gradient Separations to achieve maximum throughput and maximize resolution
 - system solutions
 - method solutions
 - -use shorter gradients
 - -use higher flow rates
 - -use shorter columns
 - -use smaller particle sizes
 - -increase temperature

Impact of Column Length on Resolution

- How Short is Too Short?
 - It is not the column length which influences the separation in so much as the number of gradient volumes moving across the column.

The Number of Column Volumes per Minute Impacts Resolution

- 2 Approaches:
 - <u>Approach 1</u>: Gradient volume in not proportion to the column volume (gradient run time constant while changing the column length).
 - <u>Approach 2</u>: Scale gradient volume in proportion to the column volume (change the gradient run time proportionally with the column length).

Column Volume to Gradient Volume Relationship (Approach 1)

-Gradient volume not scaled to column volume

Column volume = 0.5 mL

5 minute gradient @ 1 mL/min

gradient volume = t_g x f.r. = 5 Total volume = g.v./c.v. = 10 column vols.

Column volume = 0.2 mL

5 minute gradient @ 1 mL/min

gradient volume = t_g x f.r. = 5 Total volume = g.v./c.v. = 2 column vols.

Column Volume to Gradient Volume Relationship (Approach 2)

-Gradient volume scaled to column volume

Column volume = 0.5 mL

5 minute gradient @ 1 mL/min

gradient volume = $t_g x f.r. = 5$ Total volume = g.v./c.v. = 10 column vols.

(Column volume = 0.2 mL					
	2 minute gradient @ 1 mL/min					
9 T	gradient v Total volui	olume me = ç	e = t₃x g.v./c.v	f.r. = 2 . = 10 c	olumn vols.	

20 mm column

Impact of Column Length on Resolution (Approach 1)

-Gradient volume not scaled to column volume

Conditions: Symmetry® C₁₀, 5 μm Mobile phase: A=0.1% TFA in water, B=0.1% TFA in acetonitrile Gradient: 0-60% B in 5 minutes Column temperature: 30.0 °C Detector: 254 nm Injection volume: 1 μL Flow rate: 1 mL/min.

Maintain resolution by not scaling gradient volume proportionally to column volume. However maximun reduction of analysis time is not realized as when gradient volume is scaled.

What Factors Influence Gradient RP-HPLC Separations...

L (column length) is varied. Gradient volume is scaled in proportion to the column volume.

Impact of Column Length on **Resolution (Approach 2)**

Gradient volume scaled to column volume

Mobile phase: A=0.1% TFA in water, B=0.1% TFA in acetonitrile Gradient: 0-60% B in noted time Column temperature: 30.0 °C

Reduce analysis

-Trade-off: reduction

Summary -Impact of Column Length on Resolution

Maximum sample throughput is realized when the gradient volume is scaled proportionally to the column volume.

Gradient Delay Time

Impact of the Number of Column **Volumes on Peak Shape**

Conditions: Symmetry® C₁₈, 5 µm Mobile phase: A=0.1% TFA in water. B=0.1% TFA in acetonitrile Gradient: 0-60% B in 4 minutes Column temperature: 30.0 °C Detector: 254 nm Injection volume: 1 µL Flow rate: 2 mL/min.

Reducing the Effect of Gradient Delay Volume

 Make gradient steeper by increasing the flow rate or decreasing the gradient time

Outline

Introduction

Strategies for Higher Throughput Gradient Separations to achieve maximum throughput and maximize resolution

- system solutions
- method solutions
 - -use shorter gradients
 - -use higher flow rates
 - -use shorter columns
 - -use smaller particle sizes
 - -increase temperature

Impact of Particle Size (dp) on Resolution

Comparison of Resolution Dependence on Particle Size

Conditions:

Columns: Symmetry® G 5 μ m, 4.6 X 50 mm and Symmetry® G 3.5 μ m, 4.6 X 50 mm Mobile phase: A=0.1% TFA in water, B=0.1% TFA in acetonitrile Gradient: 0-60% B in 4 minutes Column temperature: 30.0 °C Detector: 254 nm Injection volume: 1 μ L Flow rate: 1 mL/min.

-Achieve increased resolution with the smaller particle size material in the same gradient time

-Increase throughput <u>and</u> resolution with smaller particle size if flow rate is increased

Summary -Impact of Particle Size on Resolution

- Resolution is increased as a result of using a smaller particle size. This is due to the increase in the number of theoretical plates.
- If the flow rate is increased as well as the particle size being decreased, an increase in sample throughput is realized with increasing resolution.

Outline

- Introduction
- Strategies for Higher Throughput Gradient Separations to achieve maximum throughput and maximize resolution
 - system solutions
 - method solutions
 - -use shorter gradients
 - -use higher flow rates
 - use shorter columns
 - -use smaller particle sizes
 - -increase temperature

Impact of Temperature

Summary - Method Solutions

- To obtain the fastest throughput:
 - ▶ increase flow rate
 - decrease column volume
 - decrease particle size
 - scale gradient volume with decrease in column volume
 - increase temperature to reduce viscosity of mobile phase allowing increases in flow rate