Ultraviolet and visible spectrometry

Theoretical overview

Molecular absorption of electromagnetic radiation

- changes of energy state of the molecule include
 - electronic state $\Delta E_{\rm e} = 150-600 \text{ kJ/mol}$
 - (electron transitions between orbitals)
 - vibrational state $\Delta E_v = 2-60 \text{ kJ/mol}$
 - rotational state $\Delta E_{\rm r} \approx 3 \text{ kJ/mol}$
- relation to the absorbed radiation wavelength

 $\Delta E = \Delta E_{\rm e} + \Delta E_{\rm v} + \Delta E_{\rm r} = {\rm h.v} = {\rm h.c}/\lambda$

 $h = 6.626 . 10^{-34} J s$ (Planck's constant)

Spectral regions

Region	λ	Absorbing compounds
Far ultraviolet (vacuum UV region)	<190 nm	saturated and mono-unsaturated
(Near) ultraviolet	190-380 nm	poly-unsaturated and aromatic
Visible light region	380-780 nm	coloured

Visible light absorption

Table of complementary colours:

λ (nm)	Colour of light	Colour of absorbing body
400–435	violet	yellow-green
435–480	blue	yellow
480–490	green-blue	orange
490–500	blue-green	red-orange
500–560	green	red
560–580	green-yellow	violet
580–595	yellow-orange	blue
595–620	red-orange	green-blue
620–760	red	blue-green

Labert-Beer law

transmittance $T = I/I_0$ in a diluted solution the value of absorbance *A* measured at the specific wavelength is proportional to the concentration of absorbing compound $A_{\lambda} = -\log T = \log (I_0/I) = \varepsilon_{\lambda} \cdot b \cdot c$

Energy changes of electronic transitions

Probability of transition influences the value of absorption coefficient

relation to spin state of excited electron

- 1) transition S0 (ground singlet) \rightarrow S1 (upper singlet) is allowed $\epsilon_{max} \approx 10^3 - 10^5 \ l.mol^{-1}.cm^{-1}$
- 2) transition S0 \rightarrow T1 (triplet) is forbidden $\epsilon_{max} \approx 10^{0} \text{ l.mol}^{-1} \text{.cm}^{-1}$

Terms used in UV/VIS spectrometry

chromophore	a group of atoms responsible for UV/VIS absorption of the molecule, e.g. double bonds C=C, C=C-C=C, C=O, N=N, aromatic rings etc.
auxochrome	a substituent that increases absorption of a molecule, typically methyl, hydroxyl, alkoxyl or amino group or an atom of halogen; when the auxochrome is conjugated with a π -electron system, the λ_{max} value is shifted to a longer wavelength (<i>bathochromic efect</i>)
bathochromic effect (red shift)	a shift of λ_{max} to longer wavelength caused by molecule modification or a change of solvent
hypsochromic effect (blue shift)	a shift to shorter wavelength
hyperchromic effect	an increase of absorption
hypochromic effect	a decrease of absorption

Some chromophores and the corresponding transitions

Chromophore an example of compound	Transition	λ_{\max} (nm)
H ₂ O	$\sigma \rightarrow \sigma^*$	183
C-C a C-H, CH ₄	$Q \rightarrow Q_*$	cca 170, 173
C-X, CH ₃ OH, CH ₃ NH ₂ , CH ₃ I	n→σ*	180-260, 187, 215, 258
C=C, H ₂ C=CH ₂	$\pi \rightarrow \pi^*$	160-190, <mark>162</mark>
H ₂ C=CH-CH=CH ₂	$\pi \rightarrow \pi^*$	217
C=0, H-CH=0	$n \rightarrow \pi^*, \pi \rightarrow \pi^*$	270, 170-200, 270, 185
Н2С=СН-СН=О	$n \rightarrow \pi^*, \pi \rightarrow \pi^*$	328, 208
C=N	$n \rightarrow \sigma^*, n \rightarrow \pi^*$	190, 300
N=N	n→π*	340
C=S	n→π*	500
NO ₂	$n \rightarrow \pi^*$	420-450
N=O	$n \rightarrow \pi^*$	630-700

Advanced strategies in food analysis

The effect of conjugation

Conjugated polyenes:

n	H−(CH=CH) _n −H		CH3-(CH=CH)n-CH3	
	λ_{\max} (nm)	$\log \varepsilon$	λ_{\max} (nm)	$\log \varepsilon$
2	217	4.3	223	4.4
3	268	4.7	275	4.5
4	304	?	310	4.9
5	334	5.1	341	5.1

Benzene and its derivatives

Compound	$\lambda_{\max}(nm)$	$\log \varepsilon$	λ_{\max} (nm)	$\log \varepsilon$	λ_{\max} (nm)	$\log \varepsilon$
benzene	204	3.9	254	2.0	-	-
toluene	207	3.8	261	2.4	-	-
brombenzene	210	3.9	261	2.3	-	-
phenol	211	3.8	270	3.2	-	-
benzaldehyde	250	4.1	280	3.0	320	1.7
acetophenone	246	4.0	280	3.0	320	1.7
benzoic acid	230	4.1	273	3.0	-	-
aniline	230	3.9	280	3.5	-	-
styrene	247	4.0	281	2.0	-	-
cinnamaldehyde	285	4.4	-	-	-	-
cinnamic acid	273	4.3	_	-	-	-
biphenyl	248	4.2	-	-	-	-

Heterocyclic compounds

5-membered

Compound	λ_{\max} (nm)	$\log \varepsilon$	λ_{\max} (nm)	$\log \varepsilon$
furan	200	4.0	-	-
2-furaldehyde	227	3.3	272	4.1
2-acetylfuran	225	3.4	269	4.1
pyrrole	210	4.2	240	2.5
2-acetylpyrrole	250	3.6	287	4.2
thiophene	-	-	235	3.7
2-acetylthiophene	260	3.9	285	3.7
thiazole	-	-	240	3.6

6-membered

Compound	λ_{\max} (nm)	log ε	λ_{\max} (nm)	log ε	λ_{\max} (nm)	$\log \varepsilon$
Pyridine	195	-	250	3.3	-	-
2-Picoline	-	-	262	3.4	-	-
Pyrazine	-	-	260	3.7	-	-
Quinoline	227	4.6	275	3.7	313	3.4
Isoquinoline	218	4.9	262	3.6	317	3.5
Pyrimidine	-	-	-	-	343	3.3

Polycyclic aromatic hydrocarbons

Practical rules for spectrophotometric measurement

- choice of a measuring cell
 - quartz: for UV
 - glass: for VIS
 - plastic: for some routine measurement in VIS
 - length of a cell: most commonly 0.1–5 cm \Rightarrow optimum absorbance 0.1–2
- choice of a solvent

the kind of solvent may influence the position of spectral band and the maximum absorbance

- spectrum recording
 - scan rate

very fast scan \Rightarrow higher noise of the spectrum

spectral band-width

narrow SBW (0.2–0.5 nm) \Rightarrow better resolution and higher noise of the spectrum wide SBW (2–4 nm) low resolution, low noise; suitable for the recording of wide bands (VIS region) and the highly precise measurement of a single absorbance value

• sample dilution

allowed only for stable species

Solvents for UV spectrometry

Table the lowest wavelengths of measurement with the solvent

Solvent	λ (nm)	Solvent	λ (nm)
acetonitrile, water	190	chloroform	240
isooctane, cyclohexane	195	ethylacetate	260
hexane	201	dimethylformamide	270
methanol, ethanol	205	acetic acid.	270
1,4-dioxane	215	benzene	280
diethylether	220	toluene	285
glycerol	230	pyridine	300
dichloromethane	233	acetone	330

Effect of solvent on the absorption spectrum

The kind of solvent slightly affects

- values of λ_{max} , ϵ
- shape of the spectrum

spectra of phenol measured in isooctane and ethanol

Spectra of biologically important compounds

Compound	λ_{\max} (nm)	ε (l.mol ⁻¹ .cm ⁻¹)
NAD, NADP	260	15 000
NADH NADPH	260	15 000
NADII, NADI II	340	6 200
	260	15 000
FMN, FAD	375	10 000 (FMN) 9 000 (FAD)
	445	12 500 (FMN)
	450	11 000 (FAD)
nymidayal	250	3 000
pyridoxai	320	6 000

Compound	λ_{\max} (nm)	ε (l.mol-1.cm-1)
cholesterol	235	20 000
calciferols	265	18 300
β-carotene	450	120 000
retinol	330	45 000
trans, trans-9,12-	231	35 000
octadecenoic acid.		
adenosine	267	12 300
guanosine	248	11 000
cytidine	271	9 100
thymidine	267	9 650
uridine	262	8 500

Two-component analysis

Rule of absorbance additivity:

$$A_{\lambda 1} = b \cdot (\varepsilon_{A\lambda 1} \cdot c_A + \varepsilon_{B\lambda 1} \cdot c_B)$$

$$A_{\lambda 2} = b \cdot (\varepsilon_{A\lambda 2} \cdot c_A + \varepsilon_{B\lambda 2} \cdot c_B)$$

$$c_{\rm A} = \frac{A_{\lambda 1} - A_{\lambda 2} \cdot \varepsilon_{\rm B\lambda 1} / \varepsilon_{\rm B\lambda 2}}{b \cdot (\varepsilon_{\rm A\lambda 1} - \varepsilon_{\rm A\lambda 2} \cdot \varepsilon_{\rm B\lambda 1} / \varepsilon_{\rm B\lambda 2})}$$
$$c_{\rm B} = \frac{A_{\lambda 2} - A_{\lambda 1} \cdot \varepsilon_{\rm A\lambda 2} / \varepsilon_{\rm A\lambda 1}}{b \cdot (\varepsilon_{\rm B\lambda 2} - \varepsilon_{\rm B\lambda 1} \cdot \varepsilon_{\rm A\lambda 2} / \varepsilon_{\rm A\lambda 1})}$$

Derivative spectrometry

 $T = \Phi / \Phi_0$

 $A = -\log_{10}T = -2,303 \cdot \ln T = \varepsilon \cdot b \cdot c$

 $dA/d\lambda = -2.303 \cdot (1/T) \cdot dT/d\lambda = b \cdot c \cdot d\varepsilon/d\lambda$

 \Rightarrow the first (and also the second) derivative of absorbance is proportional to the concentration of the absorbing compound

Flow injection analysis - FIA

- an optional arrangement of a (spectrophotometric) measurement
- instead of the batch-preparation of the measured solution the sample is injected into the flow of the carrier solution or the reagent solution and then measured (usually using a spectrophotometer)
- FIA is much faster than traditional batch analysis and can be easily automated

An example of FIA arrangement: determination of chlorides

Chemical principle:

 $2 \text{ Cl}^{-} + \text{Hg}(\text{SCN})_2 \rightarrow \text{HgCl}_2 + 2 \text{ SCN}^{-}$

 $\text{SCN}^{-} + \text{Fe}^{3+} \rightarrow [\text{FeSCN}]^{2+}$

absorbance of a red-coloured solution of ferric-thiocyanate complex is measured

FIA arrangement:

- a peristaltic pump delivers the reagent (a solution of mercury thiocyanate and ferric sulphate) at a constant flow rate
- a sample dose $(30 \ \mu l)$ is injected into the flow
- the reactions takes place in the capillary
- the product is measured in a flow-through cell of a spectrophotometric detector operated at 480 nm and an absorbance peak is recorded
- the next injection follows after 40 s
- approx. 100 samples per hour can be analysed

Equipment for FIA

- peristaltic pump (tubes of a diameter of 0.25 to 2 mm, flow rate 0.0005 to 10 ml/min)
- PTFE capillaries, join pieces
- low pressure injection valve (sample loop 5–500 μl)
- additional parts: filters, micro-columns, valves, thermostat
- detector (most often a spectrophotometer with a flow-through cell)