# Analysis of plant phenols and flavonoids

#### Contents

- Structural and chemical features
- Individual groups of plant phenols
- HPLC determination of phenolic compounds
- Importance of phenolic compounds analysis

## Chemical structure and properties of phenolic compounds

- one or more aromatic or heterocyclic rings
- one or more hydroxy or methoxy groups (*polyphenols*)
- occurrence in the form of glycosides and aglycones as well most often bound sugars: Glc. Gal, Rha, Ara, Xyl, Rut
- reducing agents
- antioxidants
- chelating agents
- substrates of enzymatic browning reactions
- effects on sensory quality of food

# Groups of phenolic compounds

- phenolic acids
  - benzoic acid derivatives
  - cinnamic acid derivatives
- tannins
  - hydrolyzable tannins (gallotannins, ellegotannins)
  - condensed tannins (proanthocyanidins)
- coumarins
- flavonoids and derived compounds
  - anthocyanins and anthocyanidins

- catechins
- flavanons, chalcons and dihydrochalcons
- flavons
- flavonols
- isoflavonoids
- prenylated flavonoids (e.g. isoxanthohumol)
- stilbene derivatives (e.g. resveratrol)
- other compounds

# HPLC determination of phenolic compounds

### **Sample preparation**

#### Isolation

- extraction by water (or aqueous solution of acids or salts), MeOH, EtOH, acetone, ethylacetate, dimethylsulphoxide... addition of antioxidant (TBHQ, BHA, ascorbic acid)
- enzyme hydrolysis (glycosidases, proteases, amylases)
- acid hydrolysis (glycosides  $\rightarrow$  aglycones)
- alkaline hydrolysis: deacylation of glycosides and catechins (e.g. epigallocatechin gallate) transformation of flavanons to chalcons occur

#### **Purification of the extract**

- precipitation of tannins by proteins followed by protein hydrolysis
- liquid-liquid extraction (water-BuOH) separation of aglycones
- gel chromatography
- solid phase extraction (SPE)
  - sorption: polyamide, polyvinylpyrrolidone, SiC18, anion exchanger (phenolic acids)
  - elution: ethylacetate and other semi-polar solvents acids solutions (phenolic acids)

### HPLC separation of phenolic compounds

- reversed-phase chromatography
  - stationary phase: most often SiC<sub>18</sub>
  - mobile phase:
    - water or aqueous solution of HCOOH, CH<sub>3</sub>COOH, HCOONH<sub>4</sub>...
    - and organic solvent: MeOH, iPrOH, acetonitrile (ACN) or tetrahydrofurane (THF)
  - order of elution:

substituted benzoic acids, substituted cinnamic acids, flavonoids
order of elution of classes of flavonoids with analogous skeleton substitution:
glycosides of antocyanidins, flavanons, flavonols and flavons folowed by the
respective aglycons
order of elution in the group of anthocyanidins and anthocyanins:
glycosides of delphinidin, cyanidin, petunidin, pelargonidin, peonidin and malvidin
followed by the respective aglycones

• ion-exchange chromatography: phenolic acids

### **Detection of phenolic compounds in HPLC**

- spectrophotometric detection (conventional UV/VIS or diode array detectors)
  - absorption of analytes:
    - hydroxy-benzoic acids: 270-280 nm

hydroxy-cinnamic acids: 270-280 nm, 305-330 nm

- coumarines: 220-230 nm, 310-350 nm
- anthocyanins: 500-530 nm
- flavons, flavonols, chalcons: 270-280 nm, 310-390 nm
- isoflavons: 245-270 nm, 300-350 nm
- other flavonoids: 270-280 nm, 310-350 nm
- post-column derivatization:
   reaction of catechins with *p*-DMCA: detection at 640 nm



- fluorimetric detection flavonoids  $\lambda_{ex}$  270-310 nm,  $\lambda_{em}$  310-360 nm
- electrochemical detection
  - amperometric detection Au or glassy carbon electrode
  - electro-array detector a series of working electrodes at stepwise values of potential
- MS

#### Example of HPLC separation of flavonoid standards



Column: Inertsil ODS-3 (4×150 mm, 3  $\mu$ m), t =35°C mobile phase flow rate: 0.7 ml/min A:50 mM H<sub>3</sub>PO<sub>4</sub>, pH = 2,5; B: CH<sub>3</sub>CN Programme: start-5 min: 5 % B, 5-55 min: linear gradient from 5 to 50 % B, 55 min -end: 50 % B injection volume 10 µl 1 epigallocatechin 2 catechin 3 epicatechin 4 epigallocatechingallate 5 epicatechingallate 6 myricetin 7 eridictyol 8 luteolin 9 quercetin 10 naringenin 11 apigenin 12 hesperetin 13 kaempherol 14 isorhamnetin 15 rhamnetin 16 galangin 17 tangeretin



Importance of phenolic compounds analysis

- plant phenols as possible protective anti-cancer compounds
- phenolic compounds as markers of the crude food material check of authenticity of food
  - naringin (and naringenin) vs. hesperidin (hesperetin) presence of grapefruit juice in \_ orange juice
  - floridzin or floretin marker of apple juice \_
  - arbutin (=hydroquinon-glucoside) marker of pear
  - chromatographic profiles of anthocyanins detection of another kind of fruit \_
- determination of phenols as natural antioxidants or sensory-active compounds (carnosol, carnosic acid, sinapins)

R2 = OH

#### **Determination of resveratrol**



Comparison of LC/MS (A, B) and LC/UV determination of resveratrol A – standards of cis and trans resveratrol B, C – sample of grape juice

Hypersil ODS ( $2.1 \times 100 \text{ mm}, 5 \mu \text{m}$ ) mobile phase: A - 0,5 % HCOOH, B - MeOH gradient from 25 % B to 39 % B flow rate 0.25 ml/min

Sample preparation: homogenization in water hydrolysis by  $\beta$ -glukosidase ethylacetate extraction evaporation to dryness dissolution of the residue in the mixture of MeOH-0.5 mM HCOOH (7+3)