This teaching material is a copyrighted work protected by UCT Prague copyright.

Some parts of this lecture are based on third party copyrighted works that UCT Prague uses for the purpose of instruction of its students based on a statutory licence.

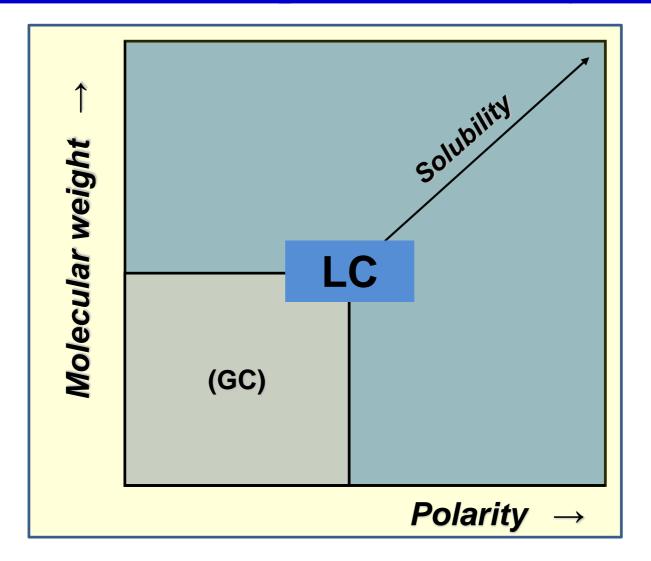
The content of this lecture is intended exclusively for the instruction of students at UCT Prague.

The content of this lecture cannot be reproduced, recorded, emulated, published or disseminated in any other way without written permission from the copyright owner.

When students at UCT Prague make a recording or emulation of the work exclusively for their use, or use the work in any other way that does not infringe copyright according to the law, this is not considered a breach of copyright.

© UCT Prague 2021

LIQUID CHROMATOGRAPHY (LC)


Partition between stationary and mobile phase

- based on differences in solubility and structure (separated compounds show the different chromatographic affinity)

Suitable for:

- almost all compounds nonreactive with others
- wide range of molecular weights and polarities
- samples with limited clean-up (higher ruggedness)
- non-targeted analysis

Estimation of compound suitability for LC

TECHNICAL REALIZATION OF LC

Source of solvents

Bottles with frits (2 µm)

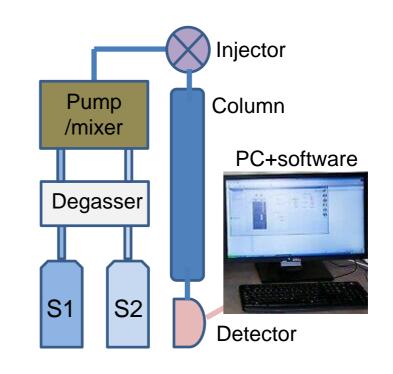
Degasser

Inert gas (He), vacuum

Injector

6-valve, automatic

Column


Packed (capillary)

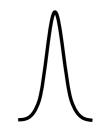
Detection – detector

Detector response/spectra - peak area or height/identification

Data processing - software

Various outputs

LC SEPARATION THEORY


After introduction to column molecules are **partitioning** between stationary (SP) and mobile phase (MP), system is almost in equilibrium – distribution between SP and MP is possible to describe using distribution constant $\mathbf{K}_{\mathbf{D}}$

All molecules are moving only in mobile phase, all molecules go through the same path at different times according to their different affinity to the stationary phase.

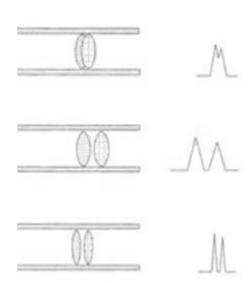
Each molecule can enter stationary phase – one enters, one exits, the distribution between phases is kept in repeating equilibrations for each molecule.

If the position is occupied, the molecule travels further until it finds a free space. Another molecule may enter the released site. With a large number of molecules oversaturation of column can appear. Typical consequences of the column oversaturation is either fronting or tailing of peaks, in the extreme case, a significant reduction of retention times.

NORMAL

FRONTING

TAILING



Separation of 2 compounds is achieved, if they have different distribution between stationary and mobile phase.

IMPROVEMENT OF SEPARATION

- 1. Increasing of differences in retention times
 - affecting of interactions between analyte and SP
 - = changes of **SP**, **MP** (solubility) and temperature
- 2. Narrowing of elution bands
 - column dimensions, temperature, flow rate

narrow elution bands needs less separation than wide ones

MAJOR FACTORS AFFECTING SEPARATION

Stationary phase – higher solubility (affinity) of analyte in SP ⇒ higher retention

Analyte structure – differences in solubility of analytes in SP and MP

Solubility of analyte in MP – affects distribution between SP and MP

Temperature – affects speed of transition of molecules between SP and MP, speed of elution

 \uparrow solubility of analyte in MP \Rightarrow \uparrow number of molecules in MP \Rightarrow \downarrow t_R and \downarrow separation

⇒ narrower elution zones with lower retention times

Other factors: column dimensions, flow rate

Overview of separation parameters

N – number of theoretical plate (efficiency):
$$N = \frac{5.55 \cdot t_R^2}{w_{\frac{1}{2}}^2}$$

k'- capacity (retention) factor:
$$k' = \frac{n_s}{n_m} = K_D \cdot \frac{V_s}{V_m} = \frac{t_R - t_0}{t_0}$$

$$\alpha$$
 - separation factor: $\alpha = k'_2 / k'_1$

Resolution (alt.):
$$R = \frac{\sqrt{N}}{4} \cdot \left(\frac{\alpha - 1}{\alpha}\right) \cdot \left(\frac{1 + k_2'}{k_2'}\right)$$

$$R = \frac{2(t_{R1} - t_{R2})}{w_1 + w_2}$$

Interpretation of separation parameters

- N ~ stationary phase quality particles size and sorting, mobile phase composition, flow rate, column length, temperature - characterizes quality of elution zone - wide, shape ...
- peak shape factor
- k' ~ composition of stationary and mobile phase, temperature, flow rate, column length
 - characterizes retention under given conditions
- retention factor (time of analysis)
- α ~ composition of stationary and mobile phase, temperature, flow rate, column length
 - characterizes separation (comparison of k')
- selectivity factor (analytes separation)
- R ~ combined parameter overall separation characteristics

Classification of liquid chromatography

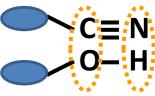
- configuration: column, thin layer sorbent, gel, paper
- separation parameters: efficiency, speed, capacity ...
- stationary phases: elution, ionex, chiral ...

COLUMNS

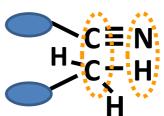
Materials – glass, metals (stainless steel, titanium)

Dimensions – length (mm - tens of cm); diameter (mm)

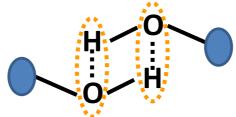
Classification according to SP and MP

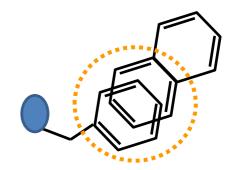

Combination of SP and MP	Particles size/sorting/porosity Applied pressure
 Elution: normal phase reverse phase (classic x semipolar) ion pair (on reverse phase) hydrophilic interaction LC (HILIC) Ion exchange (IE) catex, anex Chiral cyclodextrin phases Affinity	High Performance LC HPLC: 3-10 μm - various - p up to 400 bar Rapid Resolution LC RRLC: 1.8 μm - porous mixed - p up to 600 bar Ultra Performance LC UPLC: 1.7 μm - porous unified - p up to 1000 bar Ultra High Pressure LC UHPLC: 1.0 μm - non-porous - p up to 5000 bar

Interaction occurring during separation

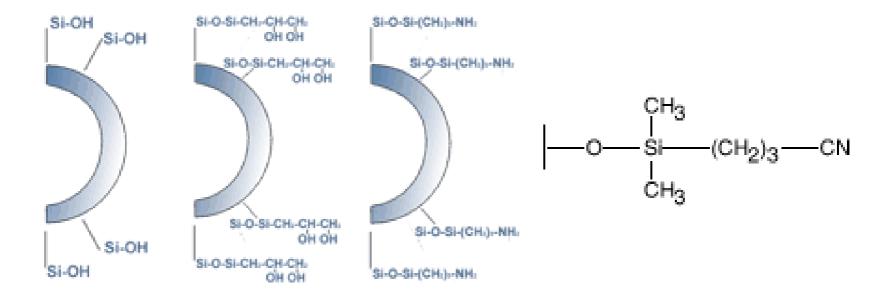

* van der Waalsovy dispersion force – *London's* induced dipole – induced dipole

* van der Waalsovy orientation forces – *Keesom's* dipole - dipole

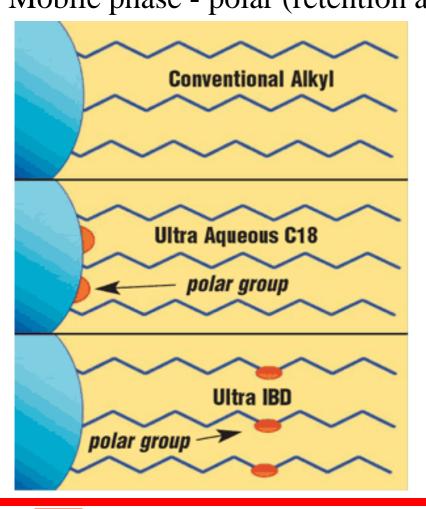

* van der Waalsovy induction forces – *Debye's* dipole – induced dipole



** electrostatic forces - Coulomb's



Normal phase chromatography (NP):


Stationary phase - polar: silica gel, modified silica gel Mobile phase - nonpolar (retention according to MP comp.)

Classic silica (non-modified), diol-silica, amino-silica, cyano-silica (propyl-group)

Reverse phase chromatography (RP):

Stationary phase - nonpolar: modified silica gel (C18 silica) Mobile phase - polar (retention according to MP comp.)

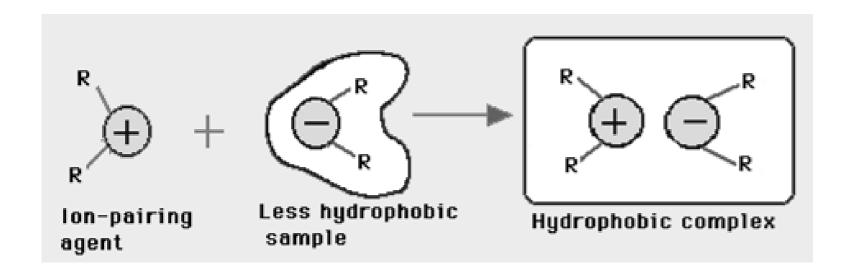
ODS - octadecylated silica gel (C18)

Other modification: C4, C8, C30

Endcapping (Embedding):

Classic - 100% nonpolar

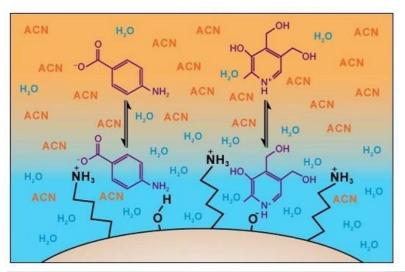
Polar – partially polar groups


Porous x nonporous

Monomeric X polymeric (cross-linked)

Ion pair chromatography:

Polar analyte + polar agent (ion pair agent)


- ⇒ nonpolar complex with retention on nonpolar SP
 - realization on reverse phase

Hydrophilic Interaction LIquid Chromatography (HILIC):

Polar analytes with weak non-polar interactivity interacts with polar groups in SP

Polar components of MP (water) shows similar behavior

Normal Phase Separation Column with hydrophilic surface		Reverse Phase Separation Column with hydrophobic surface	
MeCN/H ₂ O (HILIC)	Hexane/EtOH CO ₂ / MeOH	H ₂ O/MeCN H ₂ O/MeOH	
	Typical mobile	phases	

Chiral chromatography:

Separation of stereoisomers (enantiomers, diastereoisomers ...)

- interaction with chiral phase cavity toroid (inside hydrophobic)
- typically composed of cyclodextrins (6, 7, 8 units = α , β , γ)
- β-cyclodextrins are mostly used for separation

Ion exchange chromatography:

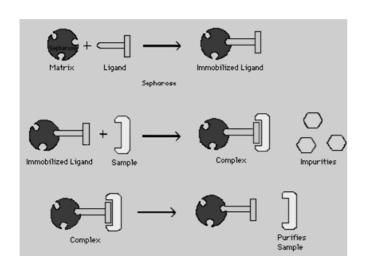
Stationary phase - embedded \oplus or Θ charged groups; counter ions are retained and released according to MP composition

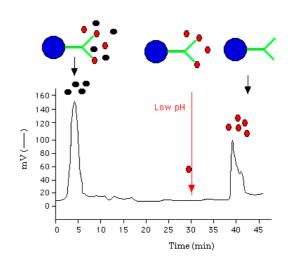
Modes of separation:

- 1. Retention of analytes on SP due to interaction of oppositely charged ions
- 2. Release of analytes to MP by change of pH or concentration increase of competitive ions (displacement of analytes)

Strong IEC: CATEX - propyl/benzene-sulfonic acid ANEX - quaternary amine, Ca²⁺ for polyols (sugars)

Weak IEC: CATEX - carboxylic acid
ANEX - amines (secondary, tertiary)


Affinity chromatography:

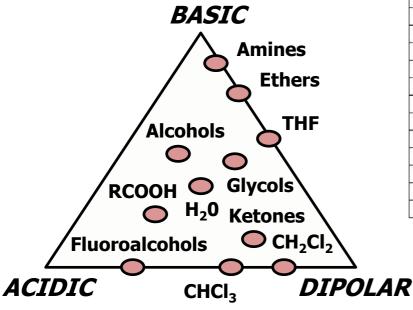

Stationary phase – immobilization of ligands (biologically active compounds);

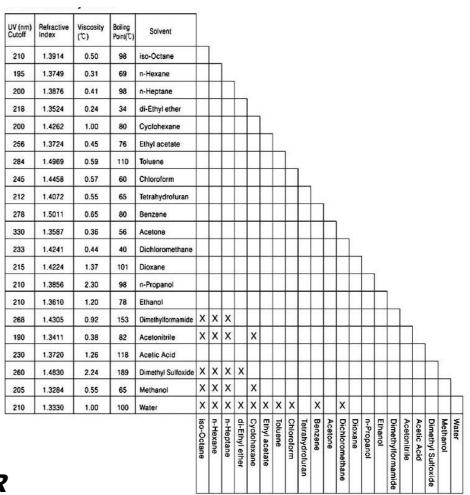
Sample specifically interacts with SP – creating complex and subsequently is released by change of MP

Modes of separation:

- 1. Retention of analytes on SP due to interaction with SP
- 2. Release of analytes to MP by change of pH or concentration increase of competitive compound (displacement of analytes)

Mobile phase - polarity, elution techniques:


SELECTION:


Sample solubility

Compatibility: SP, materials

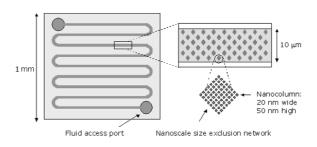
Elution: isocratic or gradient,

flow rate

Mobile phase – elution strength

Polarity (Snyder's polarity index) - P' Eluotropic value – elution strength (SP type, primary for NP) - ϵ^0 Solubility parameters - δ

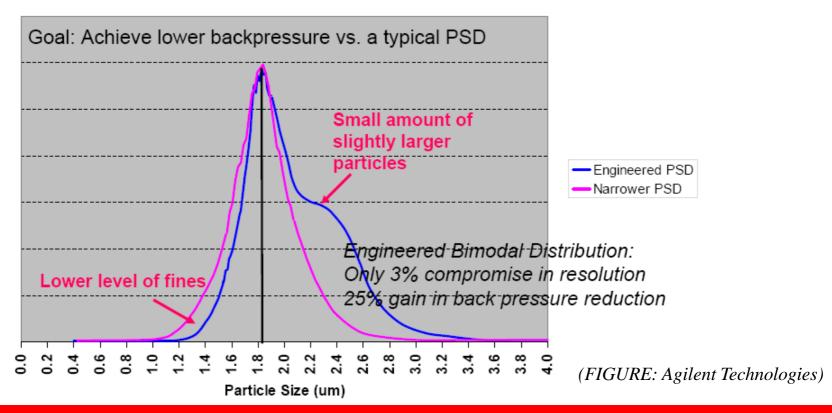
Solvent	Ρ'	ε ⁰ (silica gel)	ε ⁰ (C18)	δ
Hexane	0.1	0	-	7.3
Acetone	5.1	0.53	8.8	9.6
Acetonitrile	5.8	0.52	3.1	12.7
Methanol	5.1	0.7	1.0	14.5
H_2O	10.2	-	-	23.5


Overview of typical combinations of columns, sorbents and flow rates according to LC type

Column dimensions	Particles	Flow rate	Chromatography
10-25 cm x 3-4.6 mm	3-1 µm	0.1-2 mL/min	Conventional (classic)
0.5-7.5 cm x 3-4.6 mm	3-10 μm	0.1-2 mL/min	fast
5-25 cm x <u>+</u> 2 mm	3-10 µm	0.05-1 mL/min	narrow x micro-bore 2
15-100 cm x <u>+</u> 1 mm	3-10 µm	30-60 μL/min	narrow x micro-bore 1
10-200 cm x 0.2-0.5 mm	1-5 µm	1-10 μL/min	capillary (packed)
100-200 cm x 0.04-0.08		< 1 µL/min	capillary (open tubular)
0.5-2 cm x 2 mm	1.8 µm	0.5-2.5 mL/min	RRLC
5-15 cm x 2 mm	1.7 µm	0.1-1.0 mL/min	UPLC
5-15 cm x < 1-2 mm	1.0 µm	< 0.1-0.5 mL/min	UHPLC
Grooves on a chip	2.5-10 μm	< 1 µL/min	nano-LC (Lab on Chip)

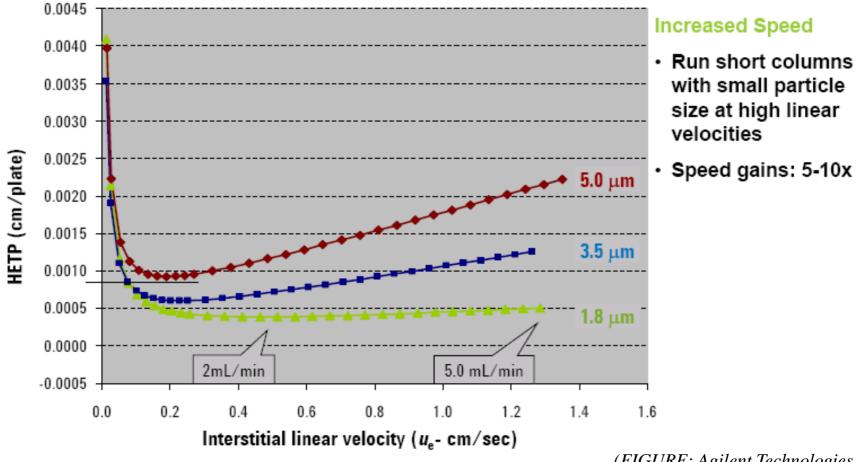
Lab on Chip

(FIGURES: Agilent Technologies)



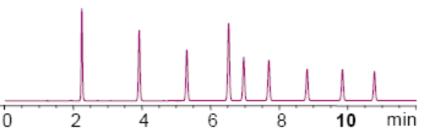
Sorbent sorting - back pressure effect

Inlet frit

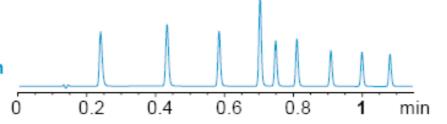

- higher permeability ⇔ porosity
- can be higher than sorbent particles
- lower permeability ⇔ porosity
- must be less than sorbent particles

 ⇒ corresponding back pressure

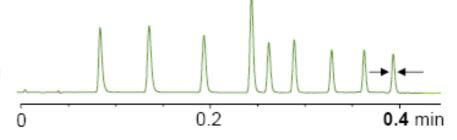
Application of sorbents with small particles


very high speed in RRLC

(FIGURE: Agilent Technologies)


Application of rapid resolution LC (RRLC)

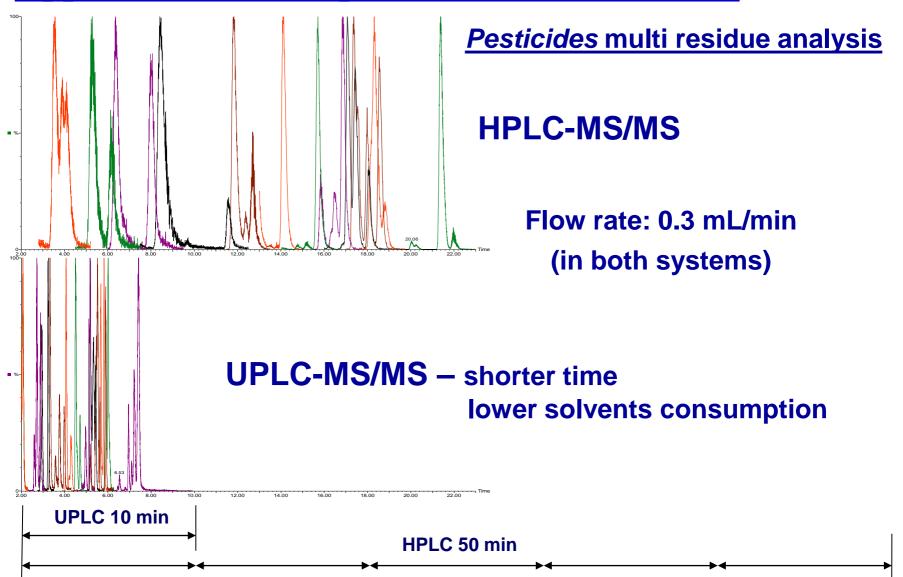
4.6 x 150mm, 5µm 1.20ml/min, 40°C Analysis Time = 11min


HPLC, **40°C** PW = 3.4sec

2.1mm x 50mm 1.8µm 1.00ml/min, 40°C Analysis Time= 1.1min

RRLC, 40°C 10x faster PW = 0.5 sec

2.1mm x 50mm 1.8µm 2.40ml/min, 95°C Analysis Time: 0.4min



RRLC, 95°C 27x faster PW = 197msec

150mm > 50mm:
$$3x$$

1.2ml/min on 4.6 > 2.4ml/min on 2.1: $10x$ $3 \times 10 = 30$

(FIGURE: Agilent Technologies)

Application of ultra performance LC (UPLC)

