

Extraction methods

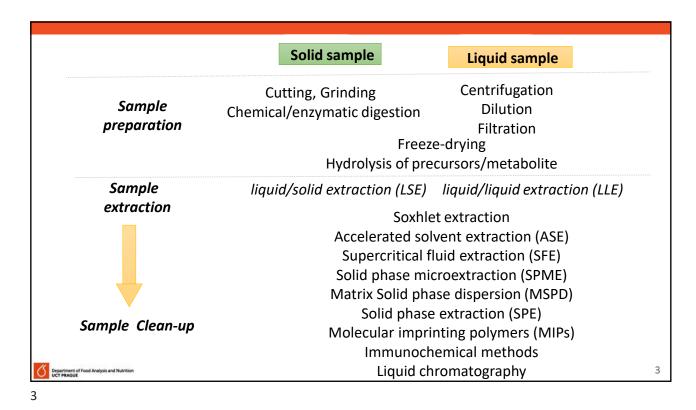
Isoolation and separation methods

1

- Sample pre-treatment
- Extraction
- Clean-up
- Concentration
- Derivatisation
- Sample analysis

Sample

Analytical sample


Crude extract

Purified extract

Department of Food Analysis and Nutrition UCT PRAGUE

Sample homogenisation

Solid matrices

https://www.epicurious.com/expert-advice/whats-the-best-mortar-and-pestle-review-chefn-mortar-and-pestle-article

Cutting

https://www.scientistlive.com/content/complete-

Liquid matrices

Filtration, Centrifugation

https://www.restek.com/en/products/sample-preparation--air-sampling/sample-preparation-products/Sample-Filtration

Department of Food Analysis and Nutrition UCT PRAGUE

Pre-treatment - freeze-drying

Advantages

- Sample conservation and storage (elimination of water prevents enzymatic and microbial activities)
- Sample homogenisation (grinding after freeze-drying lead to homogenous powder)
- Sample extraction efficiency (increased surface contact between matrix and solvent)

L imits

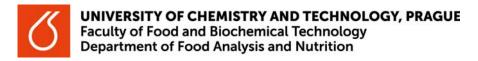
- Time consuming (24-48 h for freezing and freeze-drying)
- Risk of cross contamination (sample manipulation and grinding material)
- Compounds stability (risk for highly volatile substances)
- Price (equipment and energy)

Extraction - introduction

Aim of this step: extract the solutes from the matrix (solid, liquid, gas)

The 4 parameters to consider:

- Extraction efficiency (maximize the recovery)
- Quantity of co-extracted compounds from the matrix
- Stability of solutes (degradation,...)
- Introduction of eventual contamination



Extraction methods

- Liquid-liquid extraction (LLE)
- Solid-liquid extraction (SLE)
- Accelerated solvent extraction (ASE) / Pressurised liquid extraction (PLE)
- Microwave assisted extraction (MASE)
- Supercritical fluid extraction (SFE)
- Solid phase extraction (SPE)
- Solid phase microextraction (SPME)
- Adsorption chromatography
- Dispersive solid phase extraction (d-SPE)
- Gel permeation chromatography (GPC)

Solvent extraction methods

Liquid-liquid extraction (LLE)
Solid-liquid extraction (SLE)

Solvent extraction

- The most applied isolation method
- Transfer all (or part of) the sample matrix to the solution

Classic methods:

 Large volumes of solvents (toxicity, costs), time consuming, formation of emulsion

Modern methods:

Automation, use of hot and superheated solvents (pressure vessels)

9

Liquid-liquid extraction (LLE)

- Distribution of analytes and interferents between two immiscible liquids (mostly aqueous sample vs. organic solvent)
- The selection of extraction solvent affects the selectivity and efficiency of the extraction
- Required properties on solvent:
 - low solubility in water (<10%)
 - polarity ensuring good analyte yield
 - sufficient volatility (easy concentration)
 - compatibility with analytical suffix
- Other factors affecting balance:
 - pH adjustment (suppression of ionization acidification for acids) also affects the yield of non-ionizable compounds due to the influence of the matrix
 - addition of salts (salting out effect) e.g.: QuEChERS extraction (addition of MgSO₄ and NaCl
 - addition of metal ions (formation of ion pairs)
 - addition of chelating or complexing agent (hydrophobic products)

- Good contact between phases must be ensured (mass transfer) for example:
 - Shaking separating funnel, shaker, centrifugation, mixing
- A risk of emulsion formation, especially for samples containing surfactants and fatty components
- Removal of emulsions:
 - addition of salt
 - heating and cooling the extraction funnel
 - filtration through glass wool or filter paper
 - centrifugation
 - addition of a small amount of another organic solvent

Department of Food Analysis and Nutritio

11

LLE principle

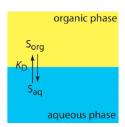
- **Nernst distribution law**
 - when two immiscible solvents A and B taken in a beaker, they form separate layers.
 - if a solute X distributes itself between two immiscible solvents A and B at constant temperature and X is in the same molecular condition in both solvents."

$$K_D = \frac{c_0}{c_{aq}}$$

 K_D ... distribution constant

 c_0 ... concentration of compound in organic phase

 $c_{aa}...$ concentration of compounds in aqueous phase


- K_D describes the balance between analyte concentrations in both phases (characteristic of a given analyte in each system).
- To separate two substances, it is necessary that their K_D differ

LLE principle

Extracted amount of analyte (E):

$$E = \frac{c_0.V_0}{c_0.V_0 + c_{aq}.V_{aq}} = \frac{K_D.V}{(1 + K_DV)}$$

 K_D ... distribution constant

 V_0 ... volume of organic phase

 V_{aq} ... volume of the aqueous phase

V ... phase reatio V_0/V_{aq}

13

13

LLE principle

■ Distribution constant (K_D) :

$$K_D = \frac{c_0}{c_{aq}} = \frac{\frac{n_0}{V_0}}{\frac{n_{aq}}{V_{aq}}} = \frac{n_0}{n_{aq}} \cdot \frac{V_{aq}}{V_0} = \frac{n_0}{n_{aq}} \cdot \frac{1}{V}$$
 V ... phase ratio V_0/V_{aq}

Extracted amount of analyte (E):

$$K_D.V = \frac{n_0}{n_{aq}} = \frac{c_0.V_0}{c_{aq}.V_{aq}} \Rightarrow K_D.V.c_{aq}.V_{aq} = c_0.V_0$$

$$\mathsf{E} = \frac{c_0.V_0}{c_0.V_0 + c_{aq}.V_{aq}} = \frac{K_D.V.c_{aq}.V_{aq}}{K_D.V.c_{aq}.V_{aq} + c_{aq}.V_{aq}} = \frac{K_D.V}{(K_DV + 1)}$$

Department of Food Analysis and Nutrition

LLE-principle

One-step extraction

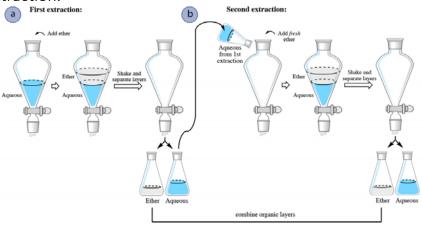
• For quantitative yield, it must be $K_D > 10$, because it is practical for the phase ratio to be greater than 0.1 and at the same time less than 10 (0.1 < V < 10).

$$K_D = 10$$
, V = 1: E = $((10*1)/(1+10*1))*100 = 91 \%$
 $K_D = 10$, V = 0,1: E = $((10*0,1)/(1+10*0,1))*100 = 50 \%$

$$E = 1 - \left[\frac{1}{1 + K_D V}\right]^n$$

Multistep extraction

- If the condition $K_D > 10$ is not met
- Multiple extraction with a smaller volume of solvent is more efficient than extraction with a total volume.

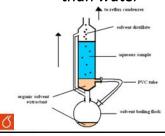


15

15

LLE - multiple extractions

An aqueous layer when the organic layer is on the top: a) First extraction, b)
 Second extraction.


SUNY_Oneonta/Chem_221%3A_Organic_Chemistry_I_(Bennett)/2%3ALab_Textbook_(Nichols)/04%3A_Extraction/4.05%3A_Extraction_Th

Department of Food Analysis and Nutrition UCT PRAGUE https://c

LLE - continuous extraction

- K_D very small \Rightarrow multi-step extraction impractical (many repetitions, large extraction volume, slow equilibration).
- Continuous extractor solvents lighter than water
- Continuous extractor solvents heavier than water

https://www.researchgate.net/figure/Fig-1-Continuous-solvent-extraction-apparatus-for-solvent-heavier-than-water_fig1_316273189

than water than water

Solvent lighter

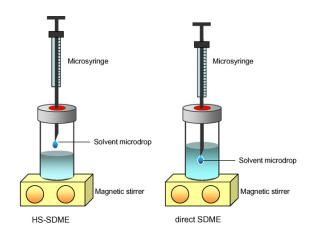
Solvent heavier


https://www.sigmaaldrich.com/CZ/en/product/aldrich/z562440

17

17

Solvent microextraction (SME)


Simple procedure, requires only a manual syringe and a few microliters of solvent for extraction and concentration of analytes from liquids, solids, and headspace samples.

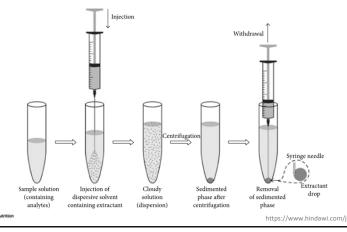
https://www.sciencedirect.com/topics/chemistry/microextraction

Department of Food Analysis and Nutrition UCT PRAGUE

Single-drop microextraction (SDME)

- During the extraction the sample solution is continuously stirred and heated.
- The intermediate phase can be the headspace above the sample solution, resulting in the headspace-single-drop microextraction (HS-SDME)
- The acceptor phase drop can be directly immersed into the donor phase, resulting in direct immersion-single-drop microextraction (DI-SDME).

Department of Food Analysis and Nutrition UCT PRAGUE


https://www.researchgate.net/figure/Schematic-diagram-of-the-single-drop-microextraction-SDME-technique_fig1_2340292

19

19

Dispersive liquid-liquid microextraction (DLLME)

 Extraction technique which involves the dispersion of fine droplets of extraction solvent in an aqueous sample

4040165/

Solvent extraction - solid samples

Solid-liquid extraction (SLE)

Transfer analytes from solid sample to solution

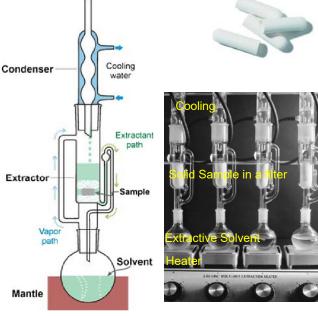
Sample adjustment:

- The larger the total surface area of the particles (or the smaller the particles, the sample is finely ground) per unit mass, the better the extraction takes place = it is more efficient. (small particles = ease of extraction)
- Solid samples: slicing, crushing, grinding, sanding with sand, and other types of homogenization...
- Viscous samples: grinding, grinding or homogenisation with dry ice or liquid nitrogen (freezing mills) and other types of homogenisation...
- Cryogenic grinding = for solid and liquid samples, grinding in the presence of dry ice (solid CO2) or liquid nitrogen, special equipment, grinds the sample into a fine powder and prevents thermal degradation of the determined substances.
- Determination of moisture, possibly water removal

21

21

SLE - realization

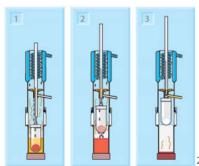

- Ensuring good contact between phases (mass transfer)
- Shaking (and heating) shaker (heated)
- Homogenization homogenizers
- Sonication ultrasound
- Solvent reflux (thermostable analytes)
- Pressurized liquid extraction (PLE) an automated technique using elevated temperature and pressure to achieve the extraction of substances from solid matrices

Soxhlet extraction

- Solid sample placed in the extraction thimble hardened filter paper/cellulose or fritted glass thimble instead of the bottom
- The thimble is placed in the apparatus, the solvent, after heating to boiling point, condenses in the thimble, extracts out the analytes, returns them to the boiling flask, evaporates again...
- Number of cycles per hour
- Max. temperature limited by the boiling point of the solvent (stability of analytes)
- The composition of the extraction mixture in the solution may not correspond to the composition in vapors (hexane: acetone (1: 1) x azeotrope (3: 1))
- High recovery x very slow/time consuming (6-8 hours)
- Well-established method, relatively undemanding and

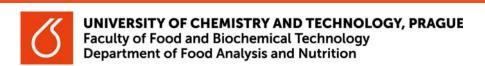
23

Soxhlet extraction


Soxtec Extractor - a faster version of Soxhlet extraction

- Phase 1 immersion of the sample in hot solvent (rapid extraction)
- Phase 2 rinsing the sample with a condensing solvent
- Phase 3 collection of pure solvent for further analyzes (65%)
- (semi) Automated extraction, 6-12 positions = extraction of 6-12 samples simultaneously
- Max. sample volume approx. 25 ml
- Extraction speed 30-60 min (Soxhlet 3-24 h)
- Heating rate from 20 ° C to 220 ° C in 20 min
- Use of common organic solvents

Advantages:


- Repeatability (± 1%)
- reduction of extraction time (vs Soxhlet)
 - + safety during heating
 - + solvent recycling
 - + simultaneous extraction of multiple samples

25

25

Extraction methods

Accelerated solvent extraction (ASE) / Pressurised liquid extraction (PLE)

Microwave assisted extraction (MASE)

Supercritical fluid extraction (SFE)

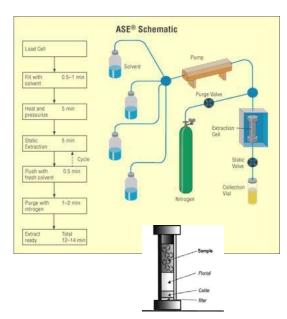
Pressurized liquid extraction (PLE)

- Also called pressurized solvent extraction (PSE) or accelerated solvent extraction (ASE)
- A steel cell is used (e.g. i.d. = 19.1 mm), the volume can be e.g. 11, 22 or 33 ml, up to 24 positions. The temperature is approx. Up to 200 °C, the pressure up to approx. 20 MPa.
- Samples: dry, ground, possibly with the addition of sodium sulphate (desiccant)
- Solvent extraction of solid matrices at elevated temperature and pressure. Higher temperature means higher extraction kinetics, higher pressure keeps the solvent liquid.
- Obtaining a crude extract:
 - further purification necessary
 - compared to conventional methods: faster, lower solvent consumption, comparable yield, often better repeatability
- Selective extraction:
 - appropriate choice of solvent
 - by adding a sorbent to the sample (mixing + layer above the sample)

Department of Food Analysis and Nutrition

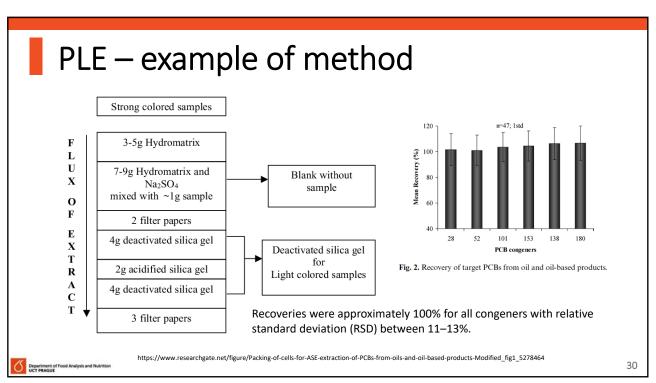
27

27


PLE

High temperature and high pressure : low solvent viscosity

- •to enhance the solubility of the target analytes,
- assist in breaking down analyte-matrix interactions
- encourage the diffusion of the analyte to the matrix surface


Extraction

- •Cell with sample under high T° and 100 bars (under N₂ with extractive solvent)
- •n cycles in static mode
- •Elution of the extract

Department of Food Analysis and Nutrition

PLE

Advantages:

Extraction can be automated

Short extraction time compared to Soxhlet,

Moderate consumption of solvents,

Simplicity of sample preparation prior to analysis Increasing of the extraction rates

Useful for organic pollutant (Kow>4)

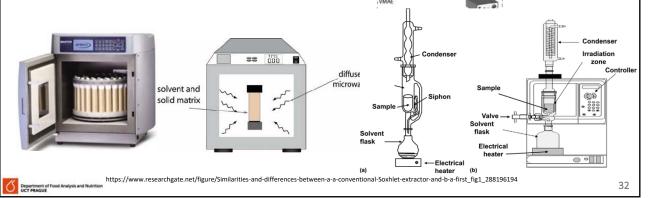
Limits:

High costs of purchasing and maintaining apparatus, Low extraction selectivity,

Time-consuming cleanup of extracts and equipment

31

Department of Food Analysis and Nutrition UCT PRAGUE


31

Microwave-Assisted Solvent Extraction (MASE)

Different types of extraction, arrangement...

Microwaves - electromagnetic waves, frequency 300 MHz - 300

GHz, used frequency 2450 MHz.

MASE

- Frequency 2450 MHz:
- Heating dipole rotation molecules with a high dielectric constant try to orient themselves in an electric field, but this changes so fast that they start to vibrate and heat up due to friction (collisions of neighboring molecules).

non-polarized dipoles

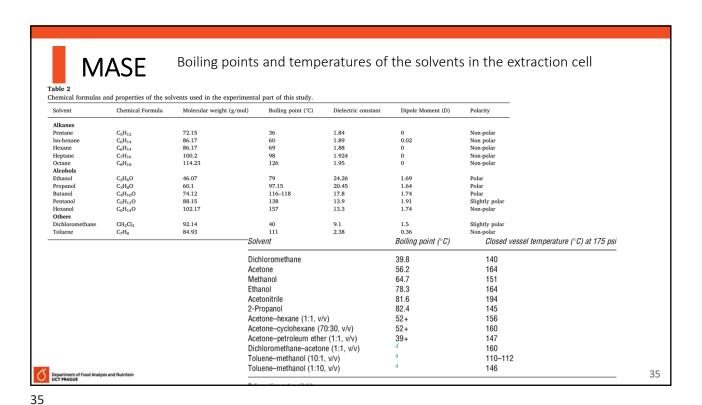
polarized dipoles by an inserted electric field

Other frequencies will not induce heat low frequency = molecules orient themselves high frequency = molecules do not even begin to orient

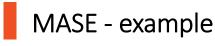
33

33

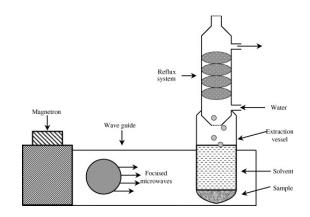
MASE


Microwave energy absorbing solvent

 The solvent is heated above the boiling point in a closed vessel, accelerating the analyte extraction - high temperature and pressure (up to 200 °C and 175 psi)


Solvent not absorbing microwave energy

- The solvent is not heated, selective heating of certain substances in the sample → release of heated analytes into the cold liquid, closed or open vessel.
- Milder for thermolabile fabrics. The possibility of using liquid carbon dioxide, which does not absorb microwave energy - a substitute for supercritical fluid extraction (SFE). Lower pressure and temperature.



MASE Boiling points and temperatures of the solvents in the extraction cell 180 160 Temperature (°C) acetone : hexane (1:1) 120 100 80 60 40 hexane 20 Time (min) 36 Department of Food Analysis and Nutrition UCT PRAGUE

- MASE with focused field /focused microwaves
- Microwaves aimed at the bottom of the sample container, the neck is cold effective reflux (possible addition of reagents), magnetic stirrer microwave frequency:
- 2450 MHz, variable power 30 300 W
- 0.1 15 g of sample,
- approx. 30 50 ml of solvent,
- within 30 min

Department of Food Analysis and Nutritic

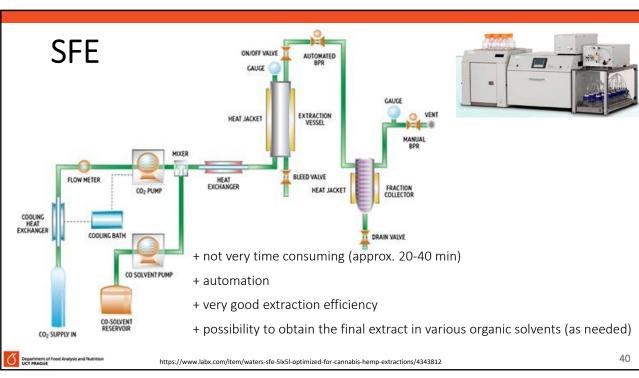
37

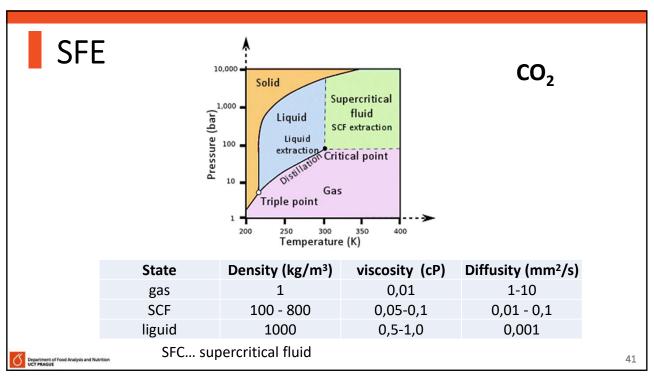
37

MASE - benefits

- Small amounts of solvents (30-50 ml)
- Speed (minutes x hours Soxhlet) direct heating of the sample, not the vessel
- Efficiency, reproducibility
- Selectivity
 - can be influenced by the choice of solvent, the heating time
 - local heating and selective extraction and migration of certain substances from the matrix into the solvent
 - Soxhlet extraction heating of the whole matrix and diffusion of the solvent into the matrix
- Simultaneous extraction of multiple samples

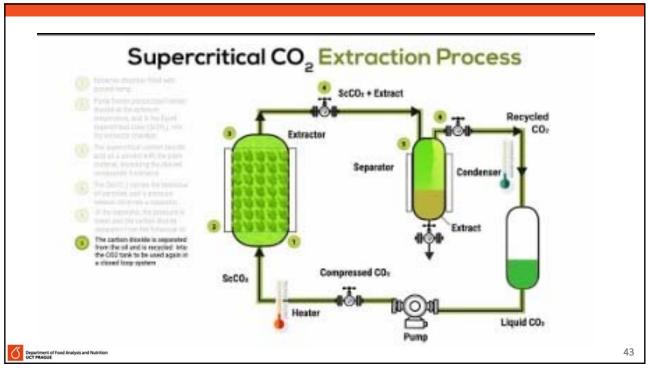
Department of Food Analysis and Nutrition UCT PRAGUE




Supercritical fluid extraction (SFE)

- Liquid-solid extraction
- Alternative sample preparation method
- Allows setting of extraction selectivity (temperature, pressure)
- For analyte/matrix combinations, purification by the addition of a sorbent can be performed
- It allows the concentration of analytes in a small volume of solvent
- It requires relatively lengthy optimization for given analyte / matrix combinations
- Fast and easily automated extraction implementation
- Saving of solvents, laboratory utensils, laboratory work and low burden on the environment
- High acquisition costs, specialized service required

Department of Food Analysis and Nutrition


39

41

Critical parameters of different fluids Molar weight **Critical temperature Critical pressure** Density (kg / m3) Fluid (g/mol) (K) (MPa (atm)) carbon dioxide 44,01 304,1 7,38 (72,8) 0,496 nitrous oxide 44,01 309,1 7,29 (71,9) 0,453 freon22(CHCIF2) 86,47 369,1 4,96 (49,0) 18,02 water 647,3 22,12 (218,3) 0,348 methane 16,04 190,4 4,60 (45,4) 0,162 30,7 305,3 ethan 4,87 (48,1) 0,203 44,09 369,8 0,217 propane 4,25 (41,9) 28,05 ethylene 282,4 5,04 (49,7) 0,215 42,08 364,9 0,232 propylene 4,60 (45,4) methanol 32,04 512,6 8,09 (79,8) 0,272 ethanol 46,07 513,9 6,14 (60,6) 0,276 acetone 58,08 4,70 (46,4) 0,278 508,1 42

43

This lecture is a copyrighted work protected by UCT Prague copyright.

Some parts of this lecture are based on third party copyrighted works that UCT Prague uses for the purpose of instruction of its students based on a statutory licence.

The content of this lecture is intended exclusively for the instruction of students at UCT Prague.

The content of this lecture cannot be reproduced, recorded, emulated, published or disseminated in any other way without written permission from the copyright owner.

When students at UCT Prague make a recording or emulation of the work exclusively for their use, or use the work in any other way that does not infringe copyright according to the law, this is not considered a breach of copyright.

UCT Prague 2021

Department of Food Analysis and Nutrition UCT PRAGUE