Gel Permeation Chromatography - GPC

Separation and clean-up method

Group separation of compounds with similar molecular weight – fractionation

Analytes are diluted in eluate
 ⇒ necessary to concentrate (RE)

Optimisation for given combinations analyte / matrix

Quick, rugged, easily automatable, almost universal
GPC principle

Porous particles

Small molecule

Large molecule

Column

©1995 CHP
Fractionation according to MW

Diagram showing the process of fractionation according to molecular weight (MW) with a chromatogram, sample mixture, and concentration detector.
GPC column characterisation

Exclusion limit

Working range

Diol-120

Diol-60

Fractionation

No retention

Penetration

MW
1. Pullulan (P-800) 853,000
2. Pullulan (P-400) 380,000
3. Pullulan (P-200) 186,000
4. Pullulan (P-100) 100,000
5. Pullulan (P-50) 48,000
6. Pullulan (P-20) 23,700
7. Pullulan (P-10) 12,200
8. Pullulan (P-5) 5,800
9. Maltopentadecase (G_{15}) 2,448
10. Maltoundecaose (G_{11}) 1,800
11. Maltoheptacose (G_{7}) 1,152
12. Maltopentaoease (G_{5}) 824
13. Maltotriose (G_{3}) 504
14. Maltose (G_{2}) 342
15. Glucose (G_{1}) 180
\[V_t = V_i + V_0 \]

- \(V_t \) – total volume of eluent in column
- \(V_i \) – volume of eluent held in pores of gel (stationary phase)
- \(V_0 \) – volume of eluent outside of gel particles – dead volume (mobile phase)
1. Size Exclusion Chromatography (SEC)

Separation based just on MW differences

\[K_{SEC} = \left(\frac{C_s}{C_m} \right) \]

\[V_e = V_0 + K_{SEC} V_i \]

\(V_e \) – analyte elution volume

\(C_s \) – analyte concentration in stationary phase

\(C_m \) – analyte concentration in mobile phase

\(K_{SEC} = 0 \Rightarrow \text{compound is excluded in dead volume} \)

\(K_{SEC} = 1 \Rightarrow \text{compound is totally retained} \)
2. Gel Permeation Chromatography (GPC)

Separation based on MW differences and also on other mechanisms – e.g. partition and adsorption

\[K_T = K_{SEC} + K_P + K_{AD} \]

\[V_e = V_0 + K_{SEC} V_i + K_P V_i + K_{AD} V_i \]

- \(K_P \) – distribution constant of partition mechanism
- \(K_{AD} \) – distribution constant of adsorption mechanism
Solubility Parameters (Cohesive Energy Density) (according to Hildebrand)

Cohesive energy density – \(c (\Delta E) \)

\[\Delta H - \text{vaporisation heat} \]

\[R - \text{universal gas constant} \]

\[T - \text{temperature} \]

\[V_m - \text{molar volume} \]

\[c = \frac{\Delta H - RT}{V_m} \]

Solubility parameter - \(\delta \)

Units: \(\text{cal}^{1/2}\text{cm}^{-3/2} = 0.48888 \text{ MPa}^{1/2} \)

\(\text{MPa}^{1/2} = \text{SI} = 2.0455 \text{ cal}^{1/2}\text{cm}^{-3/2} \)

\[\delta = \sqrt{c} \]
Non polar compounds – only dispersion forces

Polar compounds – other types of molecular interactions

Total solubility parameter: δ_t

$$\delta_t^2 = \delta_d^2 + \delta_o^2 + 2\delta_{\text{ind}}\delta_o + 2\delta_a\delta_b$$

δ_d – dispersion interaction

δ_o - dipole interaction

δ_{ind} – induced dipole interaction

δ_a - proton donor character

δ_b - proton acceptor character
Selected solubility parameters (\(\text{cal}^{1/2}\text{cm}^{-3/2}\))

<table>
<thead>
<tr>
<th>Liquid / gel</th>
<th>(\delta_d)</th>
<th>(\delta_o)</th>
<th>(\delta_{\text{ind}})</th>
<th>(\delta_a)</th>
<th>(\delta_b)</th>
<th>(\delta_t^a)</th>
<th>(\delta_t^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexane</td>
<td>7,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,3</td>
<td>7,3</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>8,2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8,2</td>
<td>8,2</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>7,0</td>
<td>4,0</td>
<td>1,0</td>
<td>-</td>
<td>2,7</td>
<td>8,5</td>
<td>8,9</td>
</tr>
<tr>
<td>Toluene</td>
<td>8,9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,6</td>
<td>8,9</td>
<td>8,9</td>
</tr>
<tr>
<td>THF</td>
<td>7,6</td>
<td>3,5</td>
<td>0,8</td>
<td>-</td>
<td>3,7</td>
<td>8,7</td>
<td>9,1</td>
</tr>
<tr>
<td>Benzene</td>
<td>9,2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9,2</td>
<td>9,2</td>
</tr>
<tr>
<td>Chloroform</td>
<td>8,1</td>
<td>3,0</td>
<td>0,5</td>
<td>6,5</td>
<td>0,5</td>
<td>9,3</td>
<td>9,3</td>
</tr>
<tr>
<td>Acetone</td>
<td>6,8</td>
<td>5,1</td>
<td>1,5</td>
<td>-</td>
<td>3,0</td>
<td>9,4</td>
<td>9,6</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>8,9</td>
<td>< 2,8 ></td>
<td>< 3,9 ></td>
<td>-</td>
<td>-</td>
<td>9,9</td>
<td>9,7</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>6,5</td>
<td>8,2</td>
<td>2,8</td>
<td>-</td>
<td>3,8</td>
<td>12,5</td>
<td>12,7</td>
</tr>
<tr>
<td>Methanol</td>
<td>6,2</td>
<td>4,9</td>
<td>0,8</td>
<td>8,3</td>
<td>8,3</td>
<td>14,4</td>
<td>14,5</td>
</tr>
<tr>
<td>Water</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23,5</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9,1-9,4(^c)</td>
<td>-</td>
</tr>
<tr>
<td>Polyacrylamide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15(^c)</td>
<td>-</td>
</tr>
</tbody>
</table>

* \(a\) – value calculated using equation for \(\delta_t\) ; \(b\) – value determined by evaporation ; \(c\) – estimation
Application of solubility parameters for GPC optimisation

Estimation of δ_{MX} for solvent mixtures:

$$\delta_{MX} = \sum \Phi_i \delta_i$$

$\Phi_i = \text{solvent fraction in mixture}$

The same δ values ...X... different molecular interactions

Equation for capacity ratio: - K_i

$$\ln K_i = \frac{V_{m,i}}{RT} \left(\delta_m + \delta_s - 2\delta_i \right) \cdot \left(\delta_m - \delta_s \right) + \ln \frac{n_s}{n_m}$$

$K_i = \frac{n_s}{n_m}$

δ_m – mobile phase solubility parameter

δ_s – stationary phase solubility parameter

n_m - number of moles in mobile phase

n_s – number of moles in stationary phase
Mobile and stationary phase selection

Analyte solubility (polarity)

⇒ solvent selection

⇒ gel selection

GELS

HYDROPHILIC (POLAR) ...X... HYDROPHOBIC (NONPOLAR)

SOFT (SWELLING) ...X... RIGID (NONSWELLING)
Soft gels (SEC, GPC, GF)

Working range and exclusion limit
– corresponds to gel cross linking (producer) and swelling (mobile phase selection – analyst)

Compressible column ⇒ limited applicable pressure (risk of gel structure collapse)

Usually higher capacity

Less rugged systems – many possibilities for optimisations

Sephadex: dextran gel, hydrophilic
Sepharose: agarose gel, hydrophilic
Bio-Gel P: acrylamide gel, hydrophilic
Bio-Beads: styrene-divinylbenzene copolymer, hydrophobic
Rigid gels (HPSEC, HPGPC)

Working range and exclusion limit – practical invariable

Possibility of mobile phase changes – without column refilling

Stability – higher pressure (higher flow rate)

⇒ *higher speed, efficiency*

Rugged systems – limited optimisation

PL gel: styrene based

BioSeptra – ceramic core
Soft gel - agarose

Rigid gel - BioSepra
Simple system: hand injection and collection of fractions

Automatic system: programmable injection and collection of fractions

Diagram:
- Mobile phase
- Pump
- 6 port valve
- GPC column
- Injection loop
- Eluate collection
Technical parameters:

Columns: steel - stainless, titanium, glass, plastic
from 10 x 0.5 cm to 60 x 5 cm

Gel bed: firm – defined by column size
variable – e.g. movable frits

Injection: 0.1 - 10 ml

Sample capacity: 0.1 - 10 g

Flow rate: 0.1 - 10 ml/min

Elution volumes (fractions): 20 - 300 ml (0.5 - 50 ml)
Model example: Graphic output Interpretation

Fractions range:
FROM – TO
(in ml or in min)

Alternatively:
Retention volume (time)
GPC applicability

1. Fractionation – separation
- amino acids, peptides, proteins, nucleic acids, carbohydrates

2. Clean-up
- removal of higher molecular weight undesirable compounds (often in over-abundance = waste)
 from lower molecular weight compounds (collected fraction)
- trace analysis (pesticides, industrial contaminants)