ADSORPTION CHROMATOGRAPHY (LSC)

Separation of mixture of analytes and coextractives (crude extract) using sorbent column in glass column equipped with frit (approx. 50 cm x 1 cm)

Usually selective irreversible adsorption of unwanted compounds (lipids, pigments) and elution of analytes using suitable solvent

Extract applied in starting solvent (used for column preparation and stabilisation)

ADSORPTION CHROMATOGRAPHY (LSC)

SORBENTS:

- activation (water removal by the annealing in the furnace)
- *deactivation* (standardisation of water content reduction of sorption)

Silica gel (silica): $SiO_2 \times H_2O$, usually deactivated, weakly acidic – unsuitable for separation of strongly alkaline analytes (strong sorptions); possible impregnation with $AgNO_3$

Florisil: magnesium silicate, lipids removal and other less polar compounds, necessary to activate by heating immediately before application (130°C, already annealed in the furnace)

ADSORPTION CHROMATOGRAPHY (LSC)

SORBENTS:

Aluminium oxide (alumina): separation of not too polar compounds (pigments trapping), usually weakly alkaline (pH10) – can decompose esters, rinsing by HCl and H_2O neutral reaction is obtained (pH7.5) – weaker sorption, acidic (pH 4.5); possible impregnation with AgNO₃

Magnesium oxide: weak affinity to double bonds, mostly in mixtures of sorbents (with diatomaceous earth)

Activated carbon, charcoal: nonpolar sorbent, often irreversible sorption, pigments removal

COLUMNS, CARTRIDGES

Interaction of 3 components: SOLID PHASE / ANALYTE / SOLVENT

FREQUENT GOAL = "DIGITAL CHROMATOGRAPHY"

- a) retention of analyte, elution (breakthrough) of interferences
- b) retention of interferences, elution of analytes

SPE columns:

Body material: polypropylene, glass

Frit: 20 μm, polyethylene, steel

Sorbent: predominantly silica gel, particle size 40 µm, pores size 60 Å

Volume: various - e.g. 1, 3, 6 ml

Sorbent amount: various – e.g. 100, 500 mg, 1, 2, 5, 10 g

Column capacity: 10 - 20 mg of analyte / g of sorbent (coextractives!)

Breakthrough volume: sorbent saturation - not retaining analytes

COLUMNS, CARTRIDGES

SPE realisation - extraction modes

- A) Selective extraction retention of analytes, other components of sample no retention, elution of analytes
- B) Selective elution retention of analytes and other components of sample, selective elution of analytes
- C) Selective rinsing retention of analytes and other components of sample, rinse of interfering compounds (analytes sorbed), elution of analytes
- D) Removal of sample matrix retention of sample components, analytes eluted with no retention

COLUMNS, CARTRIDGES

GENERAL SPE SCHEME

Driving force: suction – vacuum, overpressure, centrifugation

COLUMNS, CARTRIDGES

GENERAL SPE SCHEME

1. Conditioning (1 - 2 ml / 100 mg of sorbent) washing of impurities (the same strength as for sample) changing to solvent of sample (lesser or the same strength)

WETTING OF SURFACE WITH LIQUID: contact angle less than 90°

(x = 0°	Spreading
(x < 90°	Good wetting
(x = 90°	Incomplete wetting
(x > 90°	Incomplete wetting
(x > 180°	No wetting

COLUMNS, CARTRIDGES

GENERAL SPE SCHEME

2. Sample introduction

treatment (pH, ionic strength, dilution,
decreasing of analyte solubility in sample)

volume (↑ volume → removal of conditioning solvent → ↓ efficiency, yield)

flow rate (max. 5 ml/min, sufficient contact sample - phase)

Volume affects:

- size and type of column
- concentration of analyte
- amount of interferences
- analyte retention in sorbent

COLUMNS, CARTRIDGES

GENERAL SPE SCHEME

- 3. Rinsing (0.5 ml / 100 mg of sorbent) washing of impurities (the same or greater strength as for sample)
- 4. Elution (0.5 ml / 100 mg of sorbent)
 solvent type (like dissolves like, easy to evaporate)
 solvent volume (2x dead volume, approx. 2x 100 μl / 100 mg of sorbent

COLUMNS, CARTRIDGES

REASONS FOR SPE APPLICATION

- Removal of interfering compounds
- Concentration of analyte
- Group fractionation
- Change of solvent for sample
- Desalination

The goal:

removal of interferences or maximum concentration – decreasing of LODs

COLUMNS, CARTRIDGES

SELECTION OF SOLVENTS

"STRENGTH" of solvent pro given system "weak" solvent = analyte sorption "strong" solvent = analyte elution

NORMAL PHASE	WEAK	REVERSE PHASE
Hexane		Water
Isooctane		Methanol
Toluene		Isopropyl alcohol
Chloroform		Acetonitrile
Methylene chloride		Acetone
Tetrahydrofuran		Ethyl acetate
Ethyl ether		Ethyl ether
Ethyl acetate		Tetrahydrofuran
Acetone		Methylene chloride
Acetonitrile		Chloroform
Isopropyl alcohol		Toluene
Methanol	STRONG	Isooctane
		Hexane

COLUMNS, CARTRIDGES

BONDING INTERACTION: ANALYTE - SORBENT

- **A) Hydrophobic interaction:** dispersion forces (van der Waals) nonpolar phase, energy 1-10 kcal/mol
- **B) Polar interaction:** hydrogen bond, dipole-dipole, polar phase, energy 5 10 kcal/mol
- C) Ionic (electrostatic) interaction: 50 200 kcal/mol

BONDING ENERGY

COLUMNS, CARTRIDGES

BONDING INTERACTION: ANALYTE - SORBENT

- A) Hydrophobic interactions dispersion forces (van der Waals) nonpolar phase, energy 1-10 kcal/mol interaction between nonpolar molecules as a result of induced dipoles formation
 - attractive and repulsive
 - weaker than hydrogen bond or dipole-dipole interaction

COLUMNS, CARTRIDGES

BONDING INTERACTION: ANALYTE - SORBENT

- **B)** Polar interactions polar phase, energy 5 10 kcal/mol
 - **hydrogen bond** between molecules containing covalently bonded hydrogen to strongly electronegative element (O, N, F)
 - dipole-dipole between polar molecules with permanent dipole moment

COLUMNS, CARTRIDGES

BONDING INTERACTION: ANALYTE - SORBENT

- C) Ionic (electrostatic) interaction: 50 200 kcal/mol
 - between oppositely charged groups of ion exchanger and analyte

COLUMNS, CARTRIDGES

PHASES USED FOR SPE

Phase selection:

- analyte character
- solvent of sample
- type of interferences

High retention of analytes: a similar polarity of analyte and phase

Interferences: less polar than analyte - normal phase more polar than analyte - reverse phase

COLUMNS, CARTRIDGES

PHASES USED FOR SPE

- A) Normal phase-polar
- silica gel, aluminium oxide, Florisil, polar modified silica gel (CN, diol, NH₂)
- B) Reverse phase-nonpolar
- nonpolar modified silica gel (C₁₈, C₈, C₄, CH, PH, CN)
- C) Ion exchanger
- ANEX silica gel with chemically bonded positively charged modifier (quaternary amine, secondary amine)
- CATEX silica gel with chemically bonded negatively charged modifier (benzene or propylsulfonic acid)

COLUMNS, CARTRIDGES
PHASES USED FOR SPE

Description		Sorbent	Sorbent structure	Available retention mechanism		
Non-po		Ref No.	n mechanisms in aqueous samples)	Non- polar	Polar	lon- exchange
C18 (EC)	AND THE PROPERTY OF THE PARTY O	221		0	3	3
C18	Octadecyl	220	-\$i-C ₁₈ H ₃₇	0	2	2
MF C18	Octadecyl ¹	240	-\$i-C ₁₈ H ₃₇	0	2	2
C8 (EC)*	Octyl	291		0	3	(3)
C8	Octyl	290	-Şi-C _a H ₁₇	0	2	2
C2 (EC)*	Ethyl	321		0	3	3
C2	Ethyl	320	-Şi-C ₂ H _s	0	2	2
CH (EC)	Cyclohexyl*	351	\$i	0	3	3
PH (EC)	Phenyl	361	6	0	3	③ ·
PH	Phenyl	360	-j-O	0	2	2
CN (EC)	Cyanopropyl	421	-\$i-CH ₂ CH ₂ CH ₂ CN	0	3	3
Polar s	orbents (with available re	tention med	chanisms in non-aqueous samples)			1
Silica		460	-\$і-ОН		0	3
NH ₂	Aminopropyl	470	-\$i-CH ₂ CH ₂ CH ₂ NH ₂		0	2
DIOL 2,3	3-Dihydroxypropoxypropyl	430	-śi-ch,ch,ch,och,ch-ch, oh oh		0	
CN	Cyanopropyl	420	-\$i-CH ₂ CH ₂ CH ₂ CN		0	
lon-ex	change sorbents (with a	vailable ret	ention mechanisms in aqueous samples)	30		100
NH2	Aminopropyl	470	$-\dot{\text{Si-CH}_2\text{CH}_2\text{CH}_2\text{NH}_2}$ (pKa = 9.8)	3		0
SAX	Trimethylaminopropyl (Quaternary amine)	500	-și-ch₂ch₂ch₂n-(ch₃)₃ci [©]	3		0
CBA	Carboxypropyl	520	-\$i-CH ₂ CH ₂ COOH (pKa = 4.8)	3		0
SCX	Benzenesulphonic acid	530	-\$i - SO₃⊖H⊕	2		0
SUX						

Key to available ret	ention mechanisms		THE STREET	
Primary	= Secondary	= Silanol cation-exchange	2 = Strong	3 = Weak

COLUMNS, CARTRIDGES

PHASES USED FOR SPE

Silica-based phases use.

Polymer-based SPE phases used.

R.E. Majors: Trends in Sample Preparation, LCGC North America, Vol. 31, Issue 3, pp. 190-203, Mar 1, 2013

COLUMNS, CARTRIDGES

SYNTHETHIS OF CHEMICALLY BONDED SORBENTS

SILICA GEL + DERIVATISATION AGENT → SILOXANES

Derivatisation agents: mono- up to tri- halo or alkoxy silyl derivatives alkylchlorsilanes

COLUMNS, CARTRIDGES

SYNTHETHIS OF CHEMICALLY BONDED SORBENTS

SILICA GEL + DERIVATISATION AGENT → SILOXANES

Derivatisation agents: mono- up to tri- halo or alkoxy silyl derivatives alkylchlorsilanes

COLUMNS, CARTRIDGES

LIMITATIONS OF SILICA-BASED SORBENTS

Possible drawbacks:

- necessary conditioning must not dry out X automation
- residual silanol groups retention of alkaline compounds
- limited stability depends on pH (2-8)
- \downarrow pH \Rightarrow hydrolysis of bonded phase
- \uparrow pH \Rightarrow dissolution of silica gel
- insufficient retention of more polar analytes
- nonselective (cleanness of extract!)
- too strong (irreversible) sorptions of nonpolar analytes

SURFACE OF C18-silica SPE particle

COLUMNS, CARTRIDGES

LIMITATIONS OF SILICA-BASED SORBENTS

SILICA GEL (normal phase)

- strong sorption of very polar compounds (glycerol)
 - → application of modified silica gels (weaker retention)

C18 (reverse phase):

- nonselective, sometimes too strong sorptions
 - \rightarrow application of phases with more polar modifiers (C₈, C₄)
 - part of coextractives passes without retention

APPLICATION OF PHASES BASED ON PS-DVB: without silanols

- stable in wide range of pH – better retention of polar analytes

COLUMNS, CARTRIDGES

ACTIVITY OF RESIDUAL SILANOL GROUPS

Suppression: endcapping – 70% in maximum (steric reasons)

COLUMNS, CARTRIDGES

ACTIVITY OF RESIDUAL SILANOL GROUPS

Suppression - endcapping – 70% in maximum (steric reasons)

- pH adjustement (at pH2 silanol is undissociated,

at pH>2 silanol is dissociated

- → negative charge
- → electrostatic interactions)
- masking of silanols using bases (triethylamine)
- increasing of the ionic strength of sample solvent (prevention of analyte bonding)

Support - pH adjustment (≥4 – ionisation of silanols)

nonendcapped phases

COLUMNS, CARTRIDGES

TRENDS IN DEVELOPMENT OF SPE SORBENTS

Merck:

3 types of sorbents based on C18-silica differing in modification of silica gel basis

Comparison using capacity of hydrophilic (caffeine) and lipophilic (diisodecylphthalate)

Caffeine - L

DIDP - R

Capacity = mg of analyte / g sorbent)

COLUMNS, CARTRIDGES

TRENDS IN DEVELOPMENT OF SPE SORBENTS

Waters: OASISTM HLB – hydrophilic-lipophilic sorbent copolymer of N-vinylpyrrolidone (increasing water wettability) and divinylbenzene (RP)

- drying out do not decrease yield (automation)
- higher stability in wider range of pH (x C18)
- higher retention mainly for polar compounds (x C18)
- universal (also for polar and alkaline analytes)

Sorbents wetting:
C18 and OASISTM HLB
H-hydrophilic part
L-lipophilic part

COLUMNS, CARTRIDGES

TRENDS IN DEVELOPMENT OF SPE SORBENTS

- MIXED SORBENTS

SupelcleanTM ENVI-Carb II / PSA SPE - retention RP + ANEX ,,chemical filter" – removal of key interferences in pesticides analysis

Upper layer - SupelcleanTM ENVI-Carb II:

- nonporous graphitized carbon
- surface area 100 m²/g
- affinity to planar molecules
- high retention of pigments (chlorophyll, carotenoids) and sterols

Lower layer - SupelcleanTM PSA:

- *N-propylethylendiamin* (primary-secondary amine)
- high retention of fatty acids, organic acids and some polar pigments and sugars

COLUMNS, CARTRIDGES

TRENDS IN DEVELOPMENT OF SPE SORBENTS

Carbograph – *graphitized carbon* (heating of soot to 2700 – 3000°C in inert atmosphere)

- retention RP + ANEX
- nonporous, nonpolar
- surface area up to 100 m²/g
- surface contains oxygen compounds interacting with acidic compounds (separation from bases and neutrals without pH adjustment)
- quantitative extraction of very polar compounds from large volumes

COLUMNS, CARTRIDGES

ION EXCHANGERS

Extraction of acids and bases from aqueous solutions according to ion exchange rules (interaction of charged analyte and oppositely charged ionex)

Strong CATEX - benzenesulfonic acid Extraction of bases (positive ions)

Strong ANEX - quaternary amine Extraction of acids (negative ions)

Results of extraction depends on pH, ionic strength and counterion type.

COLUMNS, CARTRIDGES

ION EXCHANGERS

pH – analytes must be ionised – according to pK_a value \rightarrow pH adjustment 2 units above or below pK_a (acetic acid 4.75, cyclohexylamine 10.66)

Ionic strength – total concentration of ions in sample

- competition with analyte for binding sites on ionex

Counterion type

CATEX: Li⁺, H⁺, Na⁺, NH₄⁺ - easy changeable Cu²⁺, Ca²⁺, Ba²⁺ - difficulty changeable

ANEX: OH-, F- - easy changeable HSO³⁻, NO³⁻, CN-, Cl- - difficulty changeable

COLUMNS, CARTRIDGES

ION EXCHANGERS

CATEX – extraction of bases (positive ions)

	рН*	Ionic strength **	Counterion type
RETENTION	< pK _a of analyte > pK _a of sorbent	+	\
ELUTION	> pK _a of analyte < pK _a of sorbent	↑	↑

ANEX – extraction of acids (negative ions)

	рН*	Ionic strength **	Counterion type
RETENTION	> pK _a of analyte < pK _a of sorbent	+	\
ELUTION	< pK _a of analyte > pK _a of sorbent	↑	↑

^{* ...} at least for 2 pH units; ** \downarrow ... < 0.1 M; \uparrow ... < 0.1 M

COLUMNS, CARTRIDGES

TENTACLE ION EXCHANGERS

- functional groups located along the moving chain
 - covalently bonded, composed of 5-20 monomers
- (classic ion exchanger functional groups bonded on the support in the rigid position)
- good accessibility of analytes to functional groups = fast mass transport, high capacity, small elution volumes

EXTRACTION DISKS

DRAWBACKS of SPE columns:

- limited flow rate (small ratio of flow area and sorbent column)
- formation of channels (inhomogeneity of sorbent, space between particles)
- \rightarrow non-uniform flow rate $\rightarrow \downarrow$ sorption capacity and reproducibility

SPE DISKS characterisation:

Flat disks: similar to membrane filters

Thickness: ≤ 1 mm

Diameter: 4 - 96 mm

 \uparrow diameter $\rightarrow \uparrow$ surface $\rightarrow \uparrow$ flow rate

- A) Rigid disks
- B) Membrane disks

EXTRACTION DISKS

ADVANTAGES of SPE disks:

- larger flow area thin layer, small pressure difference $\rightarrow \uparrow$ flow rates
- reduced mass of sorbent $\rightarrow \downarrow$ dead volume $\rightarrow \downarrow$ sample volume
 - ↓ elution solvent volume
 - ↓ interferences (less retention)
- without channels formation $\rightarrow \uparrow$ retention efficiency, capacity and yield
- faster drying
- time saving (11 of water: 10 min for 45 mm disk, 2 h for column)

XXX limited number of phases

EXTRACTION DISKS

A) RIGID DISKS

- rigid glass fibers with embedded phase (silica gel, modified silica gel)
- compare to membrane disks: cheaper, quicker, less risk of blockage

SPEC microcolumns (Ansys)

- polypropylene body, no frits
- silica gel, NH₂, CN, PH, C2, C8, C18, catex, anex

ENVI TM d i s k s (Supelco, Inc.)

- diameter 47 and 90 mm
- C8, C18

EXTRACTION DISKS

Change of sorbent mass – change of diameter or thickness of membrane change of sorbent porosity

Diameter (mm)	7.5		12.1		47	
Mass (mg)	1.5	15	3.5	35	580	
Thickness (mm)	0.4	1	0.4	1	0.6	
Dead volume (μl)	10	50	25	115	600	
Particle size (μm)	5	7	5	7	5	
Pore size (Å)	85	70	85	80	80	

EXTRACTION DISKS

B) MEMBRANE DISKS

- elastic net based on PVC or PTFE with chemically bonded stationary phase

- compare to rigid disks: smaller flow rates and greater risk of blockage → prefiltration

EMPORE TM d i s k s (3M Corp. + Varian) 10 % PTFE + 90% silica gel phase C8, C18, PS-DVB, anex, catex diameter: standard - 25, 47, 90 mm

reduced in columns - 4, 7, 11 mm

EXTRACTION DISKS

• VersaPureTM Büchner funnel (prefilled - disposable)

Polypropylene body

Polyethylene frits (20 μm)

0.7 µm membrane from glass fibers below bottom frit

12.5 - 100 g of sorbent

• **Discovery SPE 96-Well Plates** (prefilled - disposable)

2ml polypropylene oblong plates with 96 positions

25 - 100 mg of sorbent / position

