EXTRACTION

> SOLVENT, i.e. LIQUID (LE)

> SOLID PHASE (SPE, SPME, SBSE)

➤ SUPERCRITICAL FLUID (SFE)

> LIQUID EXTRACTION

Liquid samples:

- Liquid-Liquid Extraction (LLE)
- Micro-Extraction (**ME**)

Solid samples:

- Liquid-Solid Extraction (LSE)
- Microwave Assisted Solvent Extraction (MASE)
- Accelerated Solvent Extraction (ASE)
 alternatively Pressurised Liquid Extraction (PLE)

> SOLID PHASE EXTRACTION

Liquid samples: direct extraction

- extraction mini-columns or extraction disks (SPE)
- solid phase microextraction (SPME, SBSE)

Solid samples: after liquid extraction

METHODS USED AT SAMPLE PREPARATION - I

R.E. Majors: A Comparative Study of European and American Trends in Sample Preparation, GC-LC INT., V6, no.3, 1993

METHODS USED AT SAMPLE PREPARATION - II

R.E. Majors: Trends in Sample Preparation , LCGC North America, Vol. 31, Issue 3, pp. 190-203, Mar 1, 2013

LIQUID EXTRACTION

- the most commonly used isolation (and separation) method
- complete or partial transfer of sample matrix to solution
- classic methods:
 - big volumes of solvents toxicity, cost
 - time demanding, emulsions forming
- modernization: automation; application of hot and overheated solvents (pressure vessels)

<u>Liquid – liquid extraction (LLE)</u>

- distribution of analytes and interfering compounds between two immiscible liquids (mostly aqueous sample and extraction organic solvent)
- extraction solvent influences selectivity and extraction efficiency required parameters: low water solubility (<10%)

polarity suitable for good analytes extractability (yield) sufficient volatility (easy to concentrate analytes)

• other factors influencing equilibrium:

pH adjustment (suppression of dissociation and ionization

- acidification for acids)

also affecting yield of non-ionisables

- by means of matrix behaviour affecting

salts addition (salting out effect)metal ions addition (ion-pairing)addition of chelating and complexing agents (hydrophobic products)

<u>Liquid – liquid extraction (LLE): REALIZATION</u>

• necessary an efficient contact of both phases (mass transfer)

SHAKING – separation funnel, shaker CENTRIFUGATION, MIXING

- risk of an emulsion formation, surfactants and fats presence
 - **Emulsions breaking (reducing, removing):**
 - salt addition
 - heating or cooling of separation funnel
 - filtration over glass wool or filter paper
 - centrifugation
 - addition of a small amount of other organic solvent

<u>Liquid – liquid extraction (LLE): THEORY</u>

Nernst distribution law – Any solute distributes between two non-miscible solvents, that the ratio of the concentrations in these two solvents is constant (at constant temperature and the same molecular condition of solute in the both solvents):

$$K_D = \frac{c_o}{c_{aq}}$$

 K_D distribution constant

 c_o ... analyte concentration in organic phase c_{aq} ...analyte concentration in aqueous phase

- K_D describes equilibrium between analyte concentrations in both phases
 - K_D is the characteristic value for the each analyte in given system
- separation of two substances is achieved, if their K_D values differ

Liquid – liquid extraction (LLE): THEORY

Extracted amount of analyte (E) - fraction:

$$E = \frac{c_o V_o}{c_o V_o + c_{aq} V_{aq}} = \frac{K_D V}{(1 + K_D V)}$$

 K_D ... distribution constant

V_o ... organic phase volume

 V_{aq} ...aqueous phase volume

V ... phase ratio V_o/V_{aq}

derivation of relations

Liquid – liquid extraction (LLE): THEORY

Distribution constant (KD):

$$K_D = \frac{c_o}{c_{aq}} = \frac{\frac{n_o}{V_o}}{\frac{n_{aq}}{V_{aq}}} = \frac{n_o}{n_{aq}} * \frac{V_{aq}}{V_o} = \frac{n_o}{n_{aq}} * \frac{1}{V}$$

 $V \dots phase \ ratio \ V_o/V_{aq}$

Extracted amount of analyte (E):

$$K_D * V = \frac{n_o}{n_{aq}} = \frac{c_o * V_o}{c_{aq} * V_{aq}} \Longrightarrow K_D * V * c_{aq} * V_{aq} = c_o * V_o$$

$$\mathbf{E} = \frac{c_o * V_o}{c_o * V_o + c_{aq} * V_{aq}} = \frac{K_D * c_{aq} * V_{aq} * V}{K_D * c_{aq} * V_{aq} * V + c_{aq} * V_{aq}} = \frac{\mathbf{K_D} * \mathbf{V}}{\mathbf{K_D} * \mathbf{V} + \mathbf{1}}$$

ONE-STEP EXTRACTION

For the quantitative yield is necessary $K_D > 10$, because in practice is 0.1 < V < 10

$$K_D = 10, V = 1:$$
 $E = ((10*1) / (1 + 10*1)) *100 = 91\%$
 $K_D = 10, V = 0.1:$ $E = ((10*0.1) / (1 + 10*0.1)) *100 = 50\%$

MULTI-STEP EXTRACTION

If it is not true, that $K_D > 10$

$$E = 1 - \left[\frac{1}{1 + K_D V} \right]^n$$

A multi-step extraction with several smaller portions of a solvent is more efficient than an one-step extraction with the total volume of all portions

CONTINUOUS EXTRACTION

Very small $K_D \Rightarrow$

multi-step extraction is inconvenient

- too many repetitions
- large total extraction volume
- slow equilibration

water

MICROEXTRACTION (ME) X IN-VIAL EXTRACTION

- miniaturization: $V \approx 0.001 0.01$
- small vol. of solv. lighter than water
- high concentration factor
- lower yield of analytes
- risk of emulsions (clean samples)
- suitable for non-polar analytes
- salting out application

<u>Liquid – solid extraction (LSE)</u>

Tranfer of analytes from solid sample to solution (extract)

Sample handling:

- creation of maximum surface per unit of mass (for small particles = facilitation of extraction)

solid samples: cutting, crushing, grinding, milling, i.e. disintegration + homogenization slimy-sticky samples: addition of suitable material – sand, sorbents (SiO₂), desiccators – Na₂SO₄) or cryogenic milling using ,,dry ice" - CO₂ or liquid N₂

- moisture determination, water removal or immobilization

<u>Liquid – solid extraction (LSE): REALIZATION</u>

Necessary an efficient contact of both phases (mass transfer)

SHAKING (+ heating) – shaker (heated) HOMOGENIZATION – homogenizers SONICATION – ultra sound bath REFLUX – termostable analytes)

Forced-Flow Leaching

- sample placed into steel column eluted with a solvent at elevated pressure and temperature closed to its boiling point
- results comparable with Soxhlet extraction, faster realization

SOXHLET EXTRACTION

Solid sample placed into Soxhlet extraction thimble

- cellulose or glass (micro)fibers and/or glass with porous bottom *Thimble* is placed into *Soxhlet apparatus*; an evaporated solvent condensates and drips to thimble, extracts analytes (and other components) to distillation flask, where the solvent is again evaporated and free of extracted compounds recycling ...

Parameters:

Number of cycles per hour (total number per sample) Extraction temperature

- given by the boiling point of a solvent: efficiency X stability Extraction mixture composition X vapours composition
- hexane: acetone (1:1) X azeotropic mixture (3:1)
 High efficiency (yield) and repeatability X slow process
 Cheap and easy a popular method
 Innovations ultrasound assisted apparatus (ultrasound probe)

SOXTEC® EXTRAKTOR (fa Tecator)

- 1 Boiling
 Rapid solubilisation in boiling solvent.
- 2 Rinsing
 Efficient removal of remaining soluble
 matter.

- Recovery
 Automatic collection of distilled
 solvent for re-use.
- Auto-shut down
 The system closes down and the cups are lifted from the hot plate.

SOXTEC® EXTRACTOR (fa Tecator)

- model HT2, HT6 up to **12 positions**
- max. sample volume ≈ 25 ml
- extraction speed **30 60 min** (Soxhlet 3 20 h)
- heating rate 20 220°C for 20 min
- suitable for common organic solvents

```
Advantages: repeatability ± 1%
time saving (compare to Soxhlet)
safety
solvents recycling (65%)
simultaneous extraction of several samples
easy operation
```

Microwave-Assisted Solvent Extraction (MASE)

Microwaves

- electromagnetic waves with frequency 300 MHz 300 GHz
- used frequency 2450 MHz

MASE (at 2450 MHz):

Heating – dipoles rotation – molecules having a high dielectric constant try to orient in electrical field, however, it is rapidly changeable, which induces vibration and friction (collisions of adjacent molecules) resulting in heating.

Different frequency does not induce heating:

- **↓ frequency** ⇒ molecules reach stable orientation
- ↑ **frequency** ⇒ molecules do not try to orient

MASE

Solvent absorbing microwave energy:

a solvent is heated above its boiling point in closed vessel, acceleration of extraction – high temperature and pressure (up to 200°C and 175 psi)

Solvent non-absorbing microwave energy:

a solvent is not heated, selective heating of some compounds in sample \rightarrow transfer of heated analytes into the cold solvent in closed or open vessel

moderate conditions – suitable for thermolabile compounds

- use of liquid CO₂ non-absorbing solvent
 - \rightarrow alternative to SFE at \downarrow p, t

MASE – boiling points and extraction temperatures of selected solvents

Solvent	Boiling point (°C)	Extraction temp. (°C)
dichloromethane	39.8	140
acetone	56.2	164
methanol	64.7	151
hexane	68.7	*
cyclohexane	80.7	*
acetone:hexane (1:1)	52.0	156

^{* ...} a solvent is not heated by microwave energy

MASE – solvents heating in dependence on time

a) acetone b) hexane c) acetone:hexane (1:1)

MASE – **FOCUSED MICROWAVES**

SOXWAVE 100 - PROLABO (France)

1 sample = 1 magnetron

= repeatability, efficiency, speed

(Classic apparatus: 1 magnetron for more samples = dispersed field, sample absorbs non-standard amount of μ -wave energy)

MASE – FOCUSED MICROWAVES SOXWAVE 100 - PROLABO (France)

- μ-waves focused on bottom of vessel, neck is cool
- efficient reflux (modifiers addition), magnetic stirrer
- μ-wave frequency: **2450 MHz**, changeable power **30 300 W**
- 0.1 15 g sample, 30 50 ml solvent, up to 30 min

SYNTHEWAVE 1000 (organic synthesis) **MICRODIGEST 3.6** (mineralization)

MASE – advantages

Small amounts of solvents: 30 - 50 ml

Speed (minutes X hours for Soxhlet extraction)

direct heating of sample – not vessel

Efficiency, reproducibility

Selectivity - solvent selection, heating time

- local (over)heating, selective extraction and migration of certain substances from sample to solvent

X

Soxhlet extraction – heating of the whole matrix and diffusion of solvent to matrix

Simultaneous extraction of more samples

ACCELERATED SOLVENT EXTRACTION - ASE alternatively PRESSURISED LIQUID EXTRACTION – PLE

ASE ExtractorTM 200 (Dionex)

Extraction cell

 \rightarrow steel, i.d. = 19.1 mm

V = 11; 22; 33 ml 24 positions

T up to 200°C, **p** up to 20 Map

Samples: dry, ground

(e.g. + sodium sulphate anhyd.)

Extraction of solid samples – elevated temperature and pressure $\uparrow T \Rightarrow \uparrow$ extraction kinetics; $\uparrow p \Rightarrow$ solvent in liquid phase

ASE, PLE - APPLICATION

- > CRUDE EXTRACT OBTAINING
- necessary next clean-up
- compare to classic methods: faster

less solvents consumption comparable yield

> SELECTIVE EXTRACTION

- selection of suitable solvents
- sorbent addition to sample (mixing + layer above sample)

ASE, PLE – extraction of PCBs from fish tissue

Sample: 3g homogenate, Na₂SO₄ + Al₂O₃

Solvent: hexane

Temperature: 100°C

Pressure: 10 MPa (1500 psi)

Heating: 5 min

Extraction: 5 min (2x)

Total extraction time: 17 min

Yield (22-124 ppb):

PCB 52, 101, 105, 118 - 100 %,

PCB 138, 153 - 42 %

RSD (%): 1.7 − 4.3

