GAS CHROMATOGRAPHY (GC)

Partition between stationary and mobile phase

- based on differences in volatility and structure

Suitable for:

- at least minimum volatile compounds
- at 350 °C must be at least partially in gaseous state (possibility of derivatisation)

ESTIMATION:
$$\uparrow M_r$$
 and $\uparrow polarity \Rightarrow \downarrow volatility$

(large nonpolar compound can be more volatile than small polar)

- thermostable compounds and nonreactive with others
- inorganic compounds are not GC amenable

GC ANALYSIS:

Injection

Split/splitless, on-column

Large volume introduction (PTV, on-column-SVE)

Separation

Theory of conventional GC Capillary columns
Multidimensional GC

Detection

Retention time, mass spectrum

Quantification

Peak area or height

GC SEPARATION - theory

After introduction to column molecules are **partitioning between** stationary and mobile phase, system is almost in equilibrium – distribution between stationary and mobile phase is possible to describe using $\mathbf{K}_{\mathbf{D}}$

All molecules are moving only in mobile phase (with the same speed), moving of mobile phase is limiting the achievement of real equilibrium \Rightarrow movement of molecules to next part of stationary phase and repeated "equilibrium"

Each molecule can enter stationary phase – one enters, one stands out, the distribution between phases is kept in repeating equilibrations for each molecule

Speed of movement is given by distribution between phases

(\uparrow mobile phase speed $\Rightarrow \uparrow$ movement speed)

GC SEPARATION - theory

Separation of 2 compounds is achieved, if they have different distribution between stationary and mobile phase

IMPROVEMENT OF SEPARATION:

1. Increasing of differences in retention times

(thermodynamic aspect) – affecting of interactions between

analyte and stationary phase

= changes of K_D and temperature

2. Narrowing of elution bands

(kinetic aspect) – column dimensions, mobile phase speed, diameter of sorbent particles, ...

⇒ <u>narrow elution bands needs less separation than wide ones</u>

GC SEPARATION - theory

Major factors affecting separation

Stationary phase – higher solubility of analyte in stationary phase ⇒ higher retention

Analyte structure – differences in solubility of analytes in stationary phase

Temperature – affects distribution of molecules between s. and m.ph.

```
(\uparrow temperature \Rightarrow \uparrow number of molecules in m.ph. \Rightarrow \downarrow t_R and \downarrow separation)
```

Other factors: column dimensions, carrier gas and its velocity

Determined by: column, temperature, linear velocity of m.ph.

Molecules of any analyte are moving in mobile phase with the same speed and spend the same time there (t_M)

 \Rightarrow difference in retention time (t_R) of analytes is given by different time spent in stationary phase (reduced retention time: t_R'= t_R - t_M)

Capacity factor (retention factor – k or k'):

• ratio of analyte time spent in stationary ph. (t_R') and in mobile ph. (t_M)

$$\mathbf{k} = (\mathbf{t}_{\mathbf{R}} - \mathbf{t}_{\mathbf{M}}) / \mathbf{t}_{\mathbf{M}}$$

Measure of an analyte retention in comparison with another one (k = 0 - no retention, $k \approx 1$ - low retention, $k \approx 10$ - high retention)

• alternative to retention times comparison

Partition coefficient (or partition ratio or distribution constant - K)

- ratio of analyte molar concentration in stationary ph. and in mobile ph.
- constant for a given combination of: analyte, stationary phase and temperature
- analytes are divided between st.ph. and m.ph. in dependence on: column temperature, their structure and structure of st.ph.

$$K_D = c_S / c_M$$

$$= k \beta = (t_R' / t_M) (r / 2 d_f)$$

$$[\beta = r / 2 d_f = V_M / V_S ... phase ratio]$$

Partition coefficient (or partition ratio or distribution constant - K)

$$\mathbf{K_D} = \mathbf{c_S} / \mathbf{c_M} = \mathbf{k} \ \beta = (t_R' / t_M) \ (r / 2 \ d_f) \qquad \dots \qquad [\beta = r/2d_f = V_M/V_S]$$

$$\mathbf{k} = \mathbf{K_D} / \beta = \mathbf{K_D} \ 2 \ \mathbf{d_f} / \mathbf{r}$$

- useful for *estimation of retention changes* at changes of column parameters
- for $\uparrow \mathbf{k}$ is necessary $\uparrow \mathbf{K_D}$ or $\downarrow \beta$
- $\uparrow \beta \Rightarrow \downarrow \mathbf{k}$ (at constant K_D)
- column length, mobile ph. type and flow rate is not directly included in equation
- important relations: $t_R' = K_D t_M (2 d_f/r) = t_M (2 c_S d_f)/(c_M r)$; $t_M = L/u$

$$\mathbf{t_R'} = (\mathbf{2} \ \mathbf{c_S} \ \mathbf{d_f} \ \mathbf{L}) / (\mathbf{c_M} \ \mathbf{r} \ \mathbf{u}) = (\mathbf{c_S/c_M}) (2\mathbf{d_f/r}) (\mathbf{L/u})$$

$$K_D \qquad 1/\beta \qquad t_M$$

Partition coefficient (or partition ratio or distribution constant - K)

```
K_D x column temperature: \uparrow temperature \Rightarrow \downarrow retention (\downarrow K_D)
```

Constant β : *small temperature change* = *great retention change*

Changes are not uniformed for all analytes

- suitable temperature programming (increasing):
- \triangleright start \uparrow K_D separation improvement
- \triangleright end \downarrow K_D (higher temperature) = narrower peaks
- \uparrow $K_D \Rightarrow$ stronger interaction with st.ph. = \uparrow t_R = more times the mass transfer = longer analysis = wider peaks (more analyte in st.ph., where is not moving
 - transfer to detector for a long time in small portions)
- $\downarrow \mathbf{K_D} \Rightarrow$ more analyte in m.ph = fast transfer to detector = narrow peaks

Selectivity factor - α

Ability of st.ph. to separate two compounds, retention ratio of two peaks **Difference (time) between tops of two peaks** (no information about the quality of separation, α is the same for wide (overlaid) or narrow peaks

$$\alpha = k_2 / k_1 = (t_{R2} - t_M) / (t_{R1} - t_M)$$

- given by functional groups, depends on specific interactions of analyte with stationary phase
- necessary $\alpha > 1$, if $\alpha = 1$, then analytes is not possible to separate

Efficiency (number of theoretical plates -n)

 \uparrow efficiency $\Rightarrow \downarrow$ elution band width

Definition based on relation between t_R and width of peak

Generally: peak width is increasing with t_R increasing

Number of theoretical plates - n

• dimensionless quantity, calculated for an analyte

$$n = 16 (t_R / w_b)^2 = 5,545 (t_R / w_h)^2$$

 $w_b \dots peak \ width \ at \ baseline, \qquad w_h \dots peak \ width \ at \ half \ of \ height$

$$\uparrow$$
 n $\Rightarrow \uparrow$ efficiency $\Rightarrow \uparrow$ separation potential (narrower peaks)

Efficiency (number of theoretical plates - n)

Important facts:

<u>n</u> is given by retention time and shape of peak used for calculation!
 <u>n</u> is higher for faster eluting analytes – for k > 5 linear dependence

Comparison must be based on the same analytes

• <u>n</u> describes efficiency of the complete system (injector, temperature, flow rate, ...) – not column only

Temperature programming causes peaks narrowing \Rightarrow <u>n</u> calculated for the same column under different temperatures differs

Efficiency (number of theoretical plates -n)

Temperature effect: \uparrow *efficiency* $\Rightarrow \downarrow$ *band width*

Efficiency: height equivalent to a theoretical plate (HETP) - h

$$\downarrow h \Rightarrow \uparrow n \Rightarrow \uparrow efficiency$$

• length of column (part of column), in which equilibrium occurs once

$$h(HETP) = L/n$$

number of theoretical plates for the defined column length

Resolution - R:

Measure of separation of 2 peaks - with regard to width of peak - measure of separation quality

```
R = 1.18 (t_{R2} - t_{R1}) / (w_{h1} + w_{h2})
```

R = 1.5 peaks separated without baseline between them

$$R < 1.5$$
 (partial) overlay $R > 1.5$ separated with distance

R – given by efficiency (peak shape), selectivity (separation) and retention (time)

$$R = 1/4 n^{1/2} ((\alpha-1)/\alpha) (k/(k+1))$$

EFFICIENCY vs. RESOLUTION

a) Lower efficiency, incomplete resolution (not separated)

b) Higher efficiency, better resolution (just separated)

c) Higher efficiency and selectivity, complete resolution (separated significantly)

Analyte elution in narrow, symmetric zone
= less possibility of overlay

Band broadening theory - Van Deemter equation

- 1. Eddy (turbulent) diffusion in mobile phase (H_F) Flow between sorbent particles is different because of different distances between them (channels) \Rightarrow molecules of analytes move with different speed.
- 2. Molecular (axial or longitudinal) diffusion in mobile phase (H_L) Analyte is concentrated at the column head in narrow zone \Rightarrow during elution occurs zone broadening by diffusion from higher concentration in zone centre to lower concentration at the edges of elution zone. (Fick's law). Effect decreases with $\uparrow \underline{u}$.

Band broadening theory - Van Deemter equation

- 3. Resistance to mass transfer in stationary phase (H_S)
 Molecules diffuse between mobile and stationary phase, with different deep \Rightarrow different retention. Molecules in mobile phase are faster then ones in stationary phase \Rightarrow band broadening.
- 4. Resistance to mass transfer in mobile phase (H_M)
 Inconsistent mobile phase flow in capillary column (in channels between particles) at wall (sorbent surface) is minimal X in the middle of stream maximal \Rightarrow molecules move with different speed. Diffusive transfer of molecules between streams compensation of differences. Effect increases with $\uparrow \underline{u}$.

$$H = H_F + H_L + H_M + H_S = A + B/u + (C_S + C_M) u$$

 $H = A + B/u + C u$

Column dimensions - Efficiency and Resolution

$$R = 1/4 \frac{n^{1/2}}{(\alpha-1)/\alpha} \frac{(k/(k+1))}{(k+1)}$$

$$t_R' = (2 c_S d_f L)/(c_M r u) = (c_S / c_M) \frac{(2d_f)(r)}{(L/u)} \frac{(L/u)}{(L/u)}$$

$$n = L/h; \qquad n = 16 (t_R/w_b)^2$$

Column length: $\uparrow L \Rightarrow \uparrow n$ $2x \uparrow L \Rightarrow \uparrow R$ only by 25 - 35 %

Inner diameter: $\downarrow r \Rightarrow \uparrow n$ $4x \downarrow r \Rightarrow \uparrow R 2x$

Film thickness of st.ph.: $\uparrow d_f \Rightarrow \uparrow$ retention

Very volatile analytes (k < 5): $\uparrow d_f \Rightarrow \uparrow n$

Less volatile analytes (k > 5): $\uparrow d_f \Rightarrow \downarrow n$ (elution at higher T

⇒ band broadening)

Temperature - Efficiency and Resolution

 \uparrow temperature $\Rightarrow \downarrow$ retention and resolution

Separation of members of homologous series: similar effect of temperature changes to retention of all members

Separation of significantly different analytes: temperature changes affect significantly separation process

A minimal temperature change can affect separation more significantly than the significant change of film thickness or column length

Carrier gas - Efficiency and Resolution

- inert, no influence on sorption desorption, selectivity
- type and velocity affect efficiency and analysis time

Linear velocity

- <u>u</u> (cm/s) velocity of carrier gas moving through column
- dissimilar across a column average value is used

Van Deemter curve

• relation of <u>u</u> and efficiency expressed as <u>h</u> (HETP)

$$\mathbf{h_{min}} = \mathbf{A} + \mathbf{B} / \mathbf{u} + \mathbf{C} \mathbf{u}$$

Carrier gas - Efficiency and Resolution

Golay equation: $h_{min} = B / u + C u$

Wall Coated Open Tubular column - WCOT (capillary c.): A = 0

- <u>low u</u> = small velocity of analyte in column = more phase interactions (**more separation**)

XXX

high longitudinal diffusion (separated zones overlaying)

 $- \underline{\text{high } u} = \text{minimal longitudinal diffusion}$

XXX

limited phase interactions

OPTIMAL LINEAR VELOCITY

- compromise to these opposed phenomena

Carrier gas - Efficiency and Resolution

Golay equation: $h_{min} = B / u + C u$

Carrier gas - Efficiency and Resolution

NITROGEN: the best efficiency (small h)

XXX

- optimal \underline{u} too low = high retention times
- very steep curve = small velocity change= big efficiency change
- for inconstant flow: many of analytes eluted with non-optimal linear velocity
- cheap

Carrier gas - Efficiency and Resolution

HELIUM: efficiency a little lower compare to nitrogen

XXX

- **optimal** \underline{u} **higher** = similar resolution for shorter time
- **not so steep curve** = lower loss of efficiency at higher velocity
- expensive

Carrier gas - Efficiency and Resolution HYDROGEN: efficiency between nitrogen and helium XXX

- **optimal** \underline{u} **at high values** = decreasing of retention times without loss of efficiency
- very flat curve
- price between N_2 and He
- best one for capillary columns, risk of explosion

