JOURNAL OF MOLECULAR SPECTROSCOPY 40, 511-518 (1971)

A New ${}^{2}\Pi_{r} = X^{2}\Pi_{r}$ Band System of NS

N. A. NARASIMHAM AND T. K. BALASUBRAMANIAN

Spectroscopy Division, Bhabha Atomic Research Centre, Trombay, Bombay, India

Vibrational and rotational analysis of four bands of NS lying in the region 2550–2665 Å is reported. They form a new band system involving a ${}^{2}\Pi_{i}{}^{-2}\Pi_{r}$ transition and arise from a common initial vibrational level v' = 0 to v'' = 4 and 5 levels of the ground state. The assignment of v', v'' quantum numbers is supported by isotope shift data from N 34 S and Δ_{2} F (J) values of the v = 4 and 5 levels of the X^{2} II state.

INTRODUCTION

Four red-degraded bands at 2556.89, 2583.02, 2634.09, and 2661.82 Å were excited in a microwave (2450 MHz) discharge through trace amounts of nitrogen and sulphur vapor contained in a carrier gas of neon at 5 mm of Hg pressure. These were reported earlier in the literature (1) but were attributed to different systems of N ³²S (2). Isotope shift studies of these bands with respect to N ³⁴S [Fig. 1 (a)] and an analysis of their rotational structure [Fig. 1(b), (c) and (d)] photographed at a dispersion of 0.73 Å/mm in the third order of an Ebert 3.4-m grating spectrograph showed that they belonged to a single new system involving ${}^{2}\Pi_{t}-X^{2}\Pi_{r}$ transition.

RESULTS AND DISCUSSION

(i) Vibrational Analysis and Isotope Shift

The four bands form two sets of doublets, 2556.89, 2583.02 Å, and 2634.09, 2661.82 Å, with a doublet separation of 395.4 cm⁻¹. The two sets of doublets are 1146 cm⁻¹ apart. This separation corresponds to the $\Delta G_{4+1/2}$ value of 1146.5 cm⁻¹ of the X ²II_r state of NS as observed by Smith and Meyer (3). In Fig. 1 (a) the bands due to the isotopic molecule N³⁴S are shown below those of N³²S. The subbands at 2556.89 and 2583.02Å show a shift of -43 cm⁻¹ while the subbands at 2634.09 and 2661.82 Å show a shift of -52.7 cm⁻¹. Taking these isotope shifts the value of v' could be fixed in the following manner. In the expression for isotope shifts, v' was assumed to have successive values of 0, 1, 2, etc and, for each such value, the upper state frequency $\omega_{e'}$ was determined. For v' = 0, a value 820 cm⁻¹ for $\omega_{e'}$ was obtained whereas with v' = 1, $\omega_{e'}$ was found to be 273 cm⁻¹ which is too low for NS. Higher values of v' gave still smaller values for $\omega_{e'}$.

FIG. 1. A new $F^{2}\Pi_{i} - X^{2}\Pi_{r}$ system of NS. (a) Isotope shifts of $N^{34}S$ bands relative to $N^{32}S$, (b) Rotational structure of ${}^{2}\Pi_{1/2} - {}^{2}\Pi_{1/2}$ subband of the 0-5 band belonging to $N^{32}S$, (c), (d) Rotational structure of ${}^{2}\Pi_{1/2} - {}^{2}\Pi_{1/2}$ and part of ${}^{2}\Pi_{3/2} - {}^{2}\Pi_{3/2}$ subbands of the 0-4 band of $N^{34}S$.

0-4 and 0-5 bands. Since the expected positions of the other members of the progression are found to fall in regions of stronger band systems of NS, they could not be identified with certainty.

(ii) Rotational Analysis and Identification of the Transition

The subbands at 2556.89 and 2634.09 Å and the corresponding isotopic bands could be completely analysed. The subbands at 2583.02 and 2661.82 Å and the corresponding isotopic band could not be analysed as they are severely overlapped. The band at 2580.17 Å belonging to N ³⁴S was free from overlap near the head and hence a partial analysis of this band could be carried out. The final rotational assignments of the lines of the 0–4 and 0–5 bands are given in Tables I and II.

As may be seen from Fig. 1 (b), (c) and (d) each band consists of single Pand R branches (with no obvious Q branch) showing that the transition is of the type $\Delta \Lambda = 0$. Two sets of combination differences $\Delta_2 F'(J) = R(J) - P(J)$ one from the band at 2556.89Å and the second from the band at 2634.09Å

```
TABLE I
```

Vacuum wavenumbers (in cm⁻¹) of the rotational lines of the new bands of ^{14}N ^{32}s

 $2\pi_{1/2} - 2\pi_{1/2}$

0-4 Band

0-5 Band

J-1/2	R(J)	P(J)	R(J)-P(J)	R(J)	P(J)	R(J)-P(J)
0	39097.02b			37951,28b		
1	97 . 72d	39093 .24 b	4.48	51 .76 b		
2	98 . 35h	91 .18b	7.17	52 ,4 0h	37945.20	7.20
3	98 . 35h	89 . 10b	9,25	52 .40 h	42.74	9 .6 6
4	98.35h	86.32	12.03	52 .4 0h	40.39	12.01
5	97.72b	83.64b	14.08	51.76b	37.76	14.00
6	97 . 02b	80 .5 6b	16.46	51 . 28b	34.61	16.67
7	95,92	77 . 20d	18.72	50 .3 3	31.34	18,99
8	94.72	73 . 47b	21.25	49,28	27.77	21.51
9	9 3, 24 b	69.35	23,89	47.72	23,90	23.82
10	91.18b	6 5.0 0	26.18	45.84	19.63	26.21
11	89,100	60,34	28.76	43.85	15.30	28.55
12	86.58	55.49	31.09	41.57	10.41	31.16
13	83.64b	50,38	33,26	38.95	05.55	33.40
14	80 .5 6b	44.84	35.72	35.94	00.22	35.72
15	77 . 20b	39.14	38.06	32.91	378 94. 69	38.22
16	73 .4 7b	32.97	40.50	29.38	88.82	40.56
17	69.62	26.6 6	42,96	25.61	82,64	42.97
18	6 5.33	20.02	45.31	21.58	76,23	45.35
19	60,83	13.06	47.77	17.12	69 , 53	47.59
20	55.92	05.85	50.07	12 .61	62.50	50,11
21	50,64	38998.30	52.34	07.71	55 .2 6	52.4 5
22	45.22	90 . 56b	54.66	02.46	47,82	54.64
23	39.48	82 . 39b	57.09	37897.02	39.87	57.15
24	33.40	73 . 90b	59,50	91.27	31.76	59.51
25	27.03	65 . 12b	61.91	85,23	23.35	61.88
26	20.34	5 6.10b	64 .24	78,88	14.64	64.24

513

J-1/ 2	R(J)	P(J)	R(J)-P(J)	R(J)	P(J)	R(J)-P(J)
27	13.35	46.71b	66.64	72.28	05.69	66.59
28	06.07	37 ,1 1b	62 .96	65,35	37796.43	68 , 92
29	38998,54	27.130	71.41	58.16	86.84	71.32
30	90 . 5Cb	16.955	73,61	50,66	76.99	73.67
31	82,395	06 . 38b	76.01	42.85	66,90	75.95
32	73 . 90b	38895.61b	78,29	34.82	56.53	78,29
33	65.12b	84.50	80,62	26.50	45.83	80.67
34	56 .10b	73,05	83,05	17.80	34.83	82 . 97
35	46.71b	61 .40 b	85.31	08,97	23,52	85.45
36	37,115	49.40	87.71	37799.70	12.00	87.70
37	27 . 13b	37.13	90.00	90,18	00,12	90.06
38	16 .95b	24.43	92.52	80,47	37688.08	92.39
39	06.380	11.59	94.79	70.52	75.64	94.88
40	38895.61b 94.92	38798.36		60.05 59. 4 4	62 .93	
41	84.10	84.87		49.30		
42	72.57			38.52		
43	61 .4 0b 60 . 60			27.54 26.81		
44	48.67			15.47		
4 5	36.24			03.68		
4 6	23.46			37691.50		
47	10.63			79.10		
48	38797.08			66 .36		

TABLE I (continued)

b - blended lines
h - band head

are found to agree for all the J values observed, thus confirming that they arise out of the same initial level. The lower-state combination differences for v'' =4 and 5 levels could be calculated from the known rotational constants of the ground state $X^{2}\Pi$. These values are found to be in good agreement with the observed $\Delta_{2}F''(J)$ values of the bands at 2556.89 and 2634.09 Å, thus lending further support to the earlier conclusion based on vibrational and isotope shift data that they involve transitions to v'' = 4 and 5 levels of $X^{2}\Pi_{r}$.

The doublet separation observed for these bands if 395.4 cm^{-1} . Since the ground state, which is a regular state, is known to have a spin-splitting of 223 cm⁻¹ the upper ²II state of these bands must be an inverted one with a splitting of 172.4 cm⁻¹. Rotational analysis of the 0-4 band belonging to N ³⁴S, wherein both the subbands could be analysed, provides further support to this conclu-

sion. It was found that for the upper ²II state, the $B_{\rm eff}$ (II_{1/2}) > $B_{\rm eff}$ (II_{3/2}). This clearly shows that the ²II_{1/2} set of levels are to be correlated with the $F_2(J)$ term series of the Hill–Van Vleck expression while the ²II_{3/2} set of levels goes with the $F_1(J)$ series. For ²II states approximating to Hund's case (a) such a correlation holds only if the ²II state is inverted. For the lower state, the reverse

TABLE II

Vacuum wavenumbers (in cm⁻¹) of the rotational lines of the new bands of ^{14}N ^{34}S

$\frac{2}{\pi}_{1/2} - \frac{2}{\pi}_{1/2}$			² 7	1/2 ^{- 2} π ₁	$2\pi_{3/2} - 2\pi_{3/2}$			
		0-4 Ban	3		0-5 Band		0 -4 B	and
J-1/	′2 R(J)	P(J)	R(J)-P(J)	R(J)	P(J)	R(J)-P(J)) R(J)	P(J)
0	39140.07Ъ			38003.97Ъ				
1	40.78b	39136.21b	4.57	04.51b			38744.95b	
2	41.32h	34.425	6,90	05.00b	37997.68	7.32	45.4 4b	
3	41.3 2h	32 . 12b	9,20	05.11h	95.84	9,27	45.70h	38736.22
4	41.32 h	29.64	11.68	05.00b	93,28	11.72	45.44b	33,86
5	40 .78b	26.87Ъ	13.91	04 . 51b	90.70	13.81	44.95b	30.95
6	40.07b	23. 89b	16.18	03 . 97b	87.61	16,36	44.08	27.83
7	39.20	20. 52b	18,68	03.20	84.47	18,73	42,94	24.40
8	37.84	16 .87 b	20,97	01.84	80.77	21.07	41.47	20,60
9	3 6,21b	12,76	23,45	00,36	76.93	23.43	39.70	16.40
10	34.42b	08 . 82d	25.60	37998,64	72.87	25.77	37.69	12.07
11	32 . 12b	04.17	27.95	96.72	68 .5 2	28,20	35,21	07.35
12	29.79	39099.28	30.51	94.31	63 .8 3	30.48	32.51	02.33
13	26.87b	94.27	32.60	91.75	58.89	32.86	29.51	38697.00
14	23.89b	88,78	35,11	88.92	53,72	35,20	26.16	91,30
15	20.52b	83,14	37.38	85.74	48.24	37.50	22,53	
16	16 . 87b	77.15	39. 72	82.31	42 .4 4	39.87	18.62	
17	13.02	70.94	42.08	78.56	36.46	42.10	14.27	
18	08 . 82b	64.33	44.49	74.61	30,17	44.44	09.73	
19	04.27	57.50	46.77	70,35	23,54	46.81	04.78	
20	39099.43	50.43b	49,00	65.75	16.64	49.11	38699.65	
21	94.40	42.92	51.48	60.95	09 .5 5	51.40	94.13	
22	89.08	35.29b	53,79	55.86	02.02	53.84		
2 3	83.40	27.24b	56.16	50.50	378 94.3 6	56.14		
24	77.46	18 . 89b	58,57	44.86	86 .3 3	58.53		
25	71.06	10.30b	60.76	38.84	77 .9 9	60.85		
26	64.48	01.39b	63.09	32.56	69.50	63.06		

TABLE II (continued)

J-1/	2 R(J)	P(J)	R(J)-P(J)	R(J)	P(J)	R(J)-P(J)
27	57.67	38992.38	65.29	26.07	60.67	65.40
28	50.43b	82.88	6 7.5 5	19,30	51.58	67.72
29	43,08	73.09	69 . 99	12,25	42,17	70.08
30	35.29b	62,99	72,30	04.8 2	32.47	72.35
31	27.24b	52,61	74.63	37897.13	22.48	74.65
32	18,895	41.97	76.92	89.19	12,30	76.89
33	10.30b	31.07	79.23	80.99	01.83	79.16
34	01.39b	19.83	81.56	72 .4 8	37790.94	81.54
35	38992.17	08.24	83,93	63. 69	79,86	83.83
3 6	82.56	38896.49	86.07	54.54	68 .50	86.04
37	72,79	84.39	88.40	45.23	56.85	88 .38
38	62.70	72.02	90.68	35.60	44.89	90.71
39	52,32	59.3 2	93.00	25.71	32.72	92.99
40	41.76	46.19	95.57	15.66	20.22	95 .44
41	30.50	32.99	97.51	04,92	07.42	97.50
42	19.17	19,59	99,58	37794.11	37694.51	99.60
43	07.48	05,46	102.02	82.96	80,94	102.02
44	38895.48	38791.18	104. 30	71.58	67.30	104.28
45	83 .39	76.83	106.56	60.00	53 .4 4	106.56
46	70.90	61.93	108.97	48.09	39.08	109.01
47	58,06	47.01	111.05	35.84	24,70	111.14
4 8	44.91	31.46	113.45	23,42	09.85	113.57
49	31.57			10.50		

b - blended lines
h - band head

situation applies, i.e., the $B_{\rm eff}$ ($\Pi_{1/2}$) < $B_{\rm eff}$ ($\Pi_{3/2}$). This is indeed expected since it is a regular ${}^{2}\Pi$ state.

Evaluation of Vibrational and Rotational Constants

The initial as well as the final ²II states have large spin-splittings and thus belong to Hund's coupling case (a). The rotational constants $B_{\rm eff}$ and $D_{\rm eff}$ are evaluated from the relation

$$\Delta_2 F_k(J) = (4B_{v\,\text{eff}}^{(k)} - 6D_{v\,\text{eff}}^{(k)})(J + \frac{1}{2}) - 8D_{v\,\text{eff}}^{(k)}(J + \frac{1}{2})^3$$

$$(k = 1 \text{ or } 2).$$

The quantum $\Delta G_{4+1/2}$ was evaluated making use of the R and P lines. Dif-

ferences between R or P lines of the same J value corresponding to the 0-4 and 0-5 bands (the branches referring to same subband) give

$$\Delta G_{4+1/2}^{(k)} - (B_{4\,\text{eff}}^{(k)} - B_{5\,\text{eff}}^{(k)})J(J+1) \qquad (k = 1 \text{ or } 2).$$

A plot of this difference against J(J + 1) is a straight line with intercept giving the $\Delta G_{4+1/2}^{(k)}$ value and the slope giving $B_{4\,\text{eff}}^{(k)} - B_{5\,\text{eff}}^{(k)}$. The value of $B_{4\,\text{eff}}^{(1)} - B_{5\,\text{eff}}^{(1)}$ was found to be 0.00638 cm⁻¹ which is slightly higher than the value of $B_{0\,\text{eff}}^{(1)} - B_{1\,\text{eff}}^{(1)} = 0.00614 \text{ cm}^{-1}$ for the $X^2\Pi$ state obtained from γ band analysis (4). The discrepancy is outside experimental errors and may be attributed to the fact that the relation between $B_{v\,\text{eff}}^{(1)}$ and v for the ground state is not just linear but has a nonvanishing $(v + \frac{1}{2})^2$ term. Using the $B_{4\,\text{eff}}^{(1)}$ and $B_{5\,\text{eff}}^{(1)}$ values one obtains, on extrapolation, a value of $B_{0\,\text{eff}}^{(1)}$ which is in good agreement with that obtained from microwave data (5).

From a knowledge of the lower-state coupling constant A_4'' , the upper state coupling constant A_0' was determined, using the *R*-branch lines of the two subbands of the 0-4 band of N³⁴S.

Finally, the band origins of the individual subbands were determined from a plot of R(J-1) + P(J) against J^2 , which incidentally, gave precise values for $(B''_{v\,\text{eff}} - B'_{v\,\text{eff}})$ and $(D''_{v\,\text{eff}} - D'_{v\,\text{eff}})$.

All the constants thus determined are listed in Tables III and IV.

Λ Doubling

No A doubling was observed even in the ${}^{2}\Pi_{1/2} {}^{-2}\Pi_{1/2}$ subbands of both the isotopic molecules, N ${}^{32}S$ and N ${}^{34}S$. Since the $\Pi_{1/2}$ component of the X ${}^{2}\Pi$ state is known to have appreciable Λ doubling ($p = 0.013 \text{ cm}^{-1}$) one would have normally

TABLE III

VIBRATIONAL AND ROTATIONAL CONSTANTS (IN cm⁻¹) OF THE NEW ${}^{2}\Pi_{inv}$ and $X^{2}\Pi_{reg}$ States of ${}^{14}N^{22}S$

Upper ² II _{inv} state	Lower $X^{2\Pi_{reg}}$ state
$\Pi_{1/2}$ substate	$\Pi_{1/2}$ substate
$\omega_e = 813 \pm 10^a$	$\Delta G_{4+1/2} = 1146.10$
$B_{0eff} = 0.5971_3$	$\omega_e = 1218.60^b$
$D_{0eff} = 1.7_0 \times 10^{-1}$	$\omega_e x_e = 7.25^b$
	$B_{4eff} = 0.7447_4$
	$B_{5 eff} = 0.7383_6$
	$D_{4\mathrm{eff}} = D_{5\mathrm{eff}} = 1.3_0 \times 10^{-6}$
	$B_{v eff}^{(1)} = 0.7727_{0} - 0.00608(v + \frac{1}{2})$
	$-0.000030(v + \frac{1}{2})^2$
Band origins	
² II	$\nu_0(0-4) = 39095.41 \text{ cm}^{-1}$
	$\nu_0(0-5) = 37949.30 \text{ cm}^{-1}$

^a Calculated using isotope shifts obtained from band origins.

^b Derived from present $\Delta G_{4+1/2}^{(1)}$ and Zeeman's $\Delta G_{1/2}^{(1)} = 1204.10 \text{ cm}^{-1}$ from γ -band analysis (4).

	TA	BL	Æ	IV
--	----	----	---	----

VIBRATIONAL AND	ROTATIONAL	Constants	(IN	cm ⁻¹)	\mathbf{OF}	THE	New	² II _{inv}	AND
	$X^2\Pi_r$	STATES OF	14]	V34S					

Upper ² Π _{iu} .	v state	Lower $X^2 \Pi_{reg}$ st	ate
$\Pi_{1/2}$ subs	tate	$\Pi_{1/2}$ substate	
Obsd	Caled	Obsd	Caled
	from ¹⁴ N ³² S		from $^{14}N^{32}S$
$B_{0 eff} = 0.5864_0$	0.5864_{6}	$B_{4\mathrm{eff}} = 0.7316_4$	0.7316_{7}
$D_{0\mathrm{eff}} = 1.6_4 \times 10^{-6}$	$1.6_4 imes10^{-6}$	$B_{5eff} = 0.7254_3$	0.7254_{6}
		$D_{4{ m eff}} = 1.2_7 imes 10^{-6}$	$1.2_5 imes10^{-6}$
		$D_{\rm 5eff} = 1.27 imes 10^{-6}$	$1.2_5 imes10^{-6}$
		$\Delta G_{4+1/2} = 1136.46$	1136.45
$\Pi_{3/2}$ subs	tate	$\Pi_{3/2}$ substate	,
$B_{0 eff} = 0.582_2$		$B_{4\mathrm{eff}} = 0.736_{6}$	
Coupling Constant	$A_0 = -172_{.4}$		
Band origins			
² I	$I_{1/2}$ -2 $\Pi_{1/2}$ subband:	$\nu_0(0-4) = 39138.43 \text{ cm}^{-1}$	
		$\nu_0(0-5) = 38001.98 \text{ cm}^{-1}$	

expected some Λ doubling in the observed bands. Since no doubling is perceptible in the series, one has to assume that the Λ doubling of the upper $\Pi_{1/2}$ component is of the same magnitude as the lower state and that their relative symmetries are such that the Λ -components of the branch lines fall on top of each other.

Some of the lines, however, show a doubling, as for example, the R(40.5) and R(43.5) lines of the 0-4 and 0-5 bands belonging to the ${}^{2}\Pi_{1/2}-{}^{2}\Pi_{1/2}$ transition of N ${}^{32}S$. These were also noticed in the bands of the isotopic molecule N ${}^{34}S$. These are perhaps due to some perturbation which seems to affect the upper $\Pi_{1/2}$ state. Since both the Λ components are affected, the perturbing state is a degenerate ${}^{2}\Delta$ or ${}^{2}\Pi$ state. Neither of the known ${}^{2}\Delta$ or ${}^{2}\Pi$ state of NS seems to cause the observed perturbations.

The new ²II state lies at $T_e = 43941 \pm 5 \text{ cm}^{-1}$ with a spin-splitting constant $A_0 = -172.4 \text{ cm}^{-1}$, $r_0 = 1.705 \text{ Å}$ and $\omega_e = 813 \pm 10 \text{ cm}^{-1}$. This could be assigned to one of the states arising out of the electron configuration $K K L (z\sigma)^2 (y\sigma)^2 (x\sigma)^2 (w\pi)^3 (v\pi)^2 \cdots {}^2\Pi_i, {}^2\Pi_r, {}^2\Pi, {}^4\Pi_i, {}^2\Phi_i$. The same configuration also gives rise to a ${}^2\Pi_r$ state which is indeed the initial state of the known ${}^2\Pi_r X {}^2\Pi$ system and lies at $T_e = 30328.5 \text{ cm}^{-1}$ with $A_e = 72.8 \text{ cm}^{-1}$, $r_e = 1.703 \text{ Å}$, and $\omega_e = 800 \text{ cm}^{-1}$.

Received: June 14, 1971

REFERENCES

- 1. A. FOWLER AND C. J. BAKKER, Proc. Roy. Soc. London A136, 28 (1932).
- 2. M. M. PATEL, Z. Phys. 173, 347 (1963).
- 3. J. J. SMITH AND B. MEYER, J. Mol. Spectrosc. 14, 160 (1964).
- 4. P. B. ZEEMAN, Can. J. Phys. 29, 174 (1951).
- 5. T. AMANO, S. SAITO, E. HIROTA, AND Y. MORINO, J. Mol. Spectrosc. 32, 97 (1969).