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a b s t r a c t

Head-space solid-phase microextraction (HS-SPME)-based procedure, coupled to comprehensive two-
dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC–TOF-MS), was employed
for fast characterisation of honey volatiles. In total, 374 samples were collected over two production
seasons in Corsica (n = 219) and other European countries (n = 155) with the emphasis to confirm the
authenticity of the honeys labelled as “Corsica” (protected denomination of origin region). For the chemo-
metric analysis, artificial neural networks with multilayer perceptrons (ANN-MLP) were tested. The best
prediction (94.5%) and classification (96.5%) abilities of the ANN-MLP model were obtained when the
raceability
rigin
uthenticity
ead-space solid-phase microextraction
omprehensive two-dimensional gas
hromatography

data from two honey harvests were aggregated in order to improve the model performance compared to
separate year harvests.

© 2008 Elsevier B.V. All rights reserved.
ime-of-flight mass spectrometry
rtificial neural networks

. Introduction

The European Union legislation (2001/110/EC) defines honey
s “the natural sweet substance produced by Apis mellifera bees
rom the nectar of plants or from secretions of living parts of
lants or excretions of plant-sucking insects on the living parts of
lants, which the bees collect, transform by combining with specific
ubstances of their own, deposit, dehydrate, store and leave in hon-
ycombs to ripen and mature” [1]. Besides water, honey consists
ainly of the monosaccharides (fructose and glucose) and many

ther substances such as organic acids, oligosaccharides, enzymes,
itamins, minerals, pigments, a wide range of aroma compounds,

nd solid particles derived from honey collection are present [2].
oney is popular not only as a source of energy but also for

ts potentially health-promoting properties provided by prebiotic,
ntioxidant, antibacterial, and/or antimutagenic functionalities of
ertain constituents [3–6]. The price of honey is usually dictated
y its botanical and/or geographical origin. While in the case of

� The information reported reflects the authors’ views; the European Commission
s not liable for any use of the information contained therein. Mention of brand or
rm names in this publication is solely for the purpose of providing specific infor-
ation and does not imply recommendation or endorsement by the Institute of

hemical Technology, Prague.
∗ Corresponding author. Tel.: +420 220 443 185; fax: +420 220 443 184.

E-mail address: jana.hajslova@vscht.cz (J. Hajslova).

021-9673/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2008.12.066
botanical origin the most expensive are unifloral honeys, in the later
case the higher price arises when honey is produced in a specific
geographic location. Up to now, the EU has specified 18 protected
denomination of origin (PDO) regions for honey (one Greek, one
Italian, one Luxemburgian, one Polish, two French (including the
island of Corsica), three Spanish, and nine Portuguese) [7]. Recently,
an increased number of alerts concerning safety (presence of a vari-
ety of unauthorised or prohibited antimicrobial substances) and
adulteration of honey have been posted [8–10]. In general, the adul-
teration techniques of honey are based on various principles: (i)
water addition and extension with sugar and/or syrups; (ii) bee
feeding with sugars and/or syrups or artificial honey; (iii) misla-
belling as a results of mixing of honeys originating from different
floral or geographical origin [2].

For the honey characterisation various parameters such as
pollen analysis, moisture content, 5-(hydroxymethyl)furan-2-
carbaldehyde concentration, sugar composition, proline content,
invertase and diastase activity, and electrical conductivity are typi-
cally considered [2,11]. In addition to these traditional approaches,
examination of the volatiles profile might be considered as a strat-
egy enabling honey authentication since its composition (volatiles

including) is known to vary widely with the floral origin and way
of processing [12].

During recent years, solid-phase microextraction (SPME) in
combination with the gas chromatographic–mass spectromet-
ric (GC–MS) technique has been implemented as a method of

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:jana.hajslova@vscht.cz
dx.doi.org/10.1016/j.chroma.2008.12.066
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hoice for the analysis of honey volatiles [13–18]. SPME, an
nexpensive, solvent-free sampling technique enables convenient
solation of a wide range of low molecular weight analytes by
heir extraction from honey head-space (HS), or aqueous honey
olution (direct immersion), and their concentration in the fibre
oating. As regards GC–MS, due to the complexity of honey
roma, identification/quantification of its components can be ham-
ered by co-elutions, which may occur when using conventional
one-dimensional) capillary GC set-up. Under these conditions,
omprehensive two-dimensional gas chromatography (GC × GC)
epresents a challenging option permitting an efficient separation
f all sample components [13]. In addition, a high-speed time-
f-flight mass spectrometer (HS-TOF-MS) allows collection of the
ata at high acquisition rates (hundreds of spectra/s), required for
roper reconstruction of very narrow peaks (50–500 ms) typically
roduced by GC × GC [19]. Also, due to a high TOF mass anal-
ser efficiency, simultaneous acquisition of full mass spectra even
t very low concentration of particular compounds is possible,
hat extends the possibility of identification of detected com-
ounds on the basis of a library search [20,21]. It should be noted
hat rather higher cost of GC × GC–TOF-MS instrumentation com-
ared to one-dimensional GC coupled to conventional MS detectors
e.g. quadrupole), is compensated by several advantages such as:
i) unbiased identification of sample components thanks to min-
mised co-elutions (hence better spectral quality); (ii) improved
etection limits thanks to enhanced signal to noise ratio; (iii)

aster GC separation (up to 4 times in the case of honey volatiles);
iv) possibility to shorten extraction time during SPME procedure,
hus allowing an increase of the sample throughput significantly
13]. On the other hand, one should be aware of large volume of
C × GC–TOF-MS data, processing of which is rather demanding,
nless smart chemometric analysis is employed. Typically, the prin-
ipal component analysis (PCA) as a clustering method is applied
or a preliminary inspection of the data structure, followed by the
arious classification methods such as linear discriminant analy-
is (LDA), discriminant partial least squares regression (DPLS), soft
ndependent modelling of class analogy (SIMCA), or artificial neural
etworks (ANN) [22–26].

In this study, the application of HS-SPME–GC × GC–TOF-MS as
n effective profiling tool, in combination with a chemometric
pproach employing ANN for data interpretation, is demonstrated
ith the emphasis to confirm the authenticity of the honeys

abelled as “Corsica” (protected denomination of origin region)
ithin the set of various European honey samples.

. Experimental

.1. Honey samples

In total, 374 honey samples were collected within the frame-
ork of the EU TRACE project [27]. In 2006 (first harvest), 111
orsican, 18 non-Corsican–French, 15 Italian, 18 Austrian, 2 Irish,
nd 18 German honey samples were collected. During 2007 (sec-
nd harvest), 108 Corsican, 28 non-Corsican–French, 15 Italian, 23
ustrian, and 18 German samples were collected. Before distribu-
ion, each honey sample was incubated at 40 ◦C overnight in an
ir oven, then manually stirred, and adjusted with distilled water
o a content of solids of 70◦ Brix (harmonisation of measurement
onditions for participants of the TRACE project). Prior to analy-
is, the honey sample (2 g) was placed into a 10-ml vial for SPME;

fter adding 2 ml of distilled water, the vial was sealed with a mag-
etic cap with PTFE/silicon septum and vortexed until complete
omogenisation was achieved. (Note: Further dilution of the honey
ample was important to enhance the transfer of volatiles from the
oney solution to the head-space.)
1216 (2009) 1458–1462 1459

2.2. Chemicals and materials

The SPME fibre 50/30 �m divinylbenzene/carboxen/polydime-
thylsiloxane (DVB/CAR/PDMS) used for sampling of honey volatiles
was supplied by Supelco (Bellefonte, PA, USA). Prior to use, the fibre
was conditioned following the manufacturer’s recommendations.

The system used for GC × GC experiments comprised a DB-5 ms,
5% phenyl polysilphenylenesiloxane (J&W Scientific, Folsom, CA,
USA) primary column; 30 m × 0.25 mm I.D., 0.25 �m film thickness,
coupled via a column connector (Agilent, Palo Alto, CA, USA) to
a SUPELCOWAX 10, polyethylene glycol (Supelco, Bellefonte, PA,
USA) second column of dimension 1.25 m × 0.1 mm I.D., 0.1 �m film
thickness. The upper temperature limits were 340 and 280 ◦C for
DB-5ms and SUPELCOWAX 10, respectively.

A mixture of n-alkanes (C8–C20) dissolved in n-hexane employed
for retention index determinations was supplied by Supelco (Belle-
fonte, PA, USA). The calculation was done for components eluting
between n-octane and n-eicosane.

2.3. Instrumentation

A Pegasus 4D system consisting of an Agilent 6890N gas
chromatograph equipped with a split/splitless injector (Agilent
Technologies, Palo Alto, CA, USA), an MPS2 autosampler for auto-
mated SPME (Gerstel, Mülheim an der Ruhr, Germany), and a
Pegasus III high-speed time-of-flight mass spectrometer (Leco
Corp., St. Joseph, MI, USA) was used. Inside the GC oven a cryogenic
modulator (N2 jets–hot air jets technology) and a secondary oven
(Leco Corp., St. Joseph, MI, USA) were mounted. Resistively heated
air was used as a medium for hot jets, while cold jets were supplied
by gaseous nitrogen cooled by liquid nitrogen.

The operating conditions of the optimised HS-SPME–GC ×
GC–TOF-MS method were as follows [13]:

(i) HS-SPME: incubation time: 5 min; incubation temperature:
40 ◦C; agitator speed: 500 rpm; extraction time: 20 min; des-
orption temperature: 250 ◦C; desorption time: 45 s (splitless).
Once the splitless period finished, the injector was switched
to the split mode (with a carrier gas flow of 50 ml/min) to
remove any residues absorbed/adsorbed on the fiber. After
6 min exposure in the injector the fibre was automatically
withdrawn and incubation and extraction of the next sample
ensued.

(ii) GC × GC: primary oven temperature program: 45 ◦C (0.75 min),
10 ◦C/min to 200 ◦C, 30 ◦C/min to 245 ◦C (1.25 min); sec-
ondary oven temperature: +20 ◦C above the primary oven
temperature; modulator offset: +35 ◦C above the primary oven
temperature; modulation period: 3 s (hot pulse 0.6 s); carrier
gas: helium (purity 99.9999%); column flow: 1.3 ml/min.

(iii) TOF-MS: electron ionisation mode (70 eV); ion source tem-
perature: 220 ◦C; mass range: m/z 25–300; acquisition
rate: 300 spectra/s; detector voltage: −1750 V (first harvest),
−1500 V (second harvest).

ChromaTOF (LECO Corp.) software (v. 2.31) was used for instru-
ment control, data acquisition, and data processing. Identification
of compounds was based on a NIST 2005 mass spectra library search
and was further confirmed by comparing linear retention indices
available in the same library.

2.4. Chemometric analysis
Chemometric analysis included the principal component analy-
sis and formation of an artificial neutral networks model employing
the software package STATISTICA “Neural Networks” (v. 6, 2003,
StatSoft, Inc., Tulsa, OK, USA) [28].
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. Results and discussion

In our earlier study [13], the HS-SPME–GC × GC–TOF-MS
pproach was optimised with emphasis on obtaining a high sam-
le throughput and achieving chromatographic (high peak capacity
f the GC × GC set-up) and analytical (spectral) resolution (decon-
olution option for partially overlapped peaks) needed for good
eparation and identification of honey volatiles. To access various
lasses of compounds potentially present in honey head-space, a
ixture of European honeys was used as a model sample for opti-
isation process. In this follow-up study, the optimised method

as been used for examination of a large set of honeys of different
eographical origin, thus, presumably, differing in profiles of the
olatiles. The feasibility of using this assumption for a traceability
urpose is presented in paragraphs below.

.1. Characterisation of honey volatiles and selection of markers

Although only European honeys were involved in the examined
et of samples, significant differences in both the extracted com-
ounds and their concentrations were observed. Fig. 1 shows an
xample of GC × GC volatiles profile as obtained by analysis of one of
orsican honeys under earlier optimised HS-SPME–GC × GC–TOF-
S conditions. Using a 3 s modulation period (identified for the
ixture of honeys as optimal), most of the volatiles were separated

n the second (polar) column in a range of 0.5–1.7 s (second dimen-
ion retention time, 2tR), while only few of them were eluted with
tR 1.7–3.0 s. Although, in this particular case, the separation space
as not fully exploited, no further tuning of GC × GC system aimed

t increasing the peak capacity was carried out since some honey
amples contained polar volatiles with very high 2tR, thus, shorter
odulation period would lead to their wrap-around and elution in

he next modulation period.

For the chemometric analysis discussed below, several potential

arkers (volatiles) were selected (see Fig. 1) after careful examina-
ion of the GC × GC profiles of analysed honey samples. The selec-
ion criteria were large differences in intensities of the peaks among
xamined samples and known relationship with honey floral ori-

able 1
nalytical data of selected honey volatiles (markers) used for chemometric analysis.

o. Marker

1 Hexanal
2 Furan-2-carbaldehyde (furfural)
3 Hexan-1-ol
4 Heptanal
5 Heptan-1-ol
6 Benzaldehyde
7 Methylsulfanyldisulfanylmethane (dimethyl trisulfide)
8 Octanal
9 1-Methyl-4-propan-2-yl-benzene (p-cymene)

10 2-Phenylacetaldehyde
11 Octan-1-ol
12 1-Phenylethanone
13 Ethyl heptanoate
14 Nonanal
15 2-Phenylethanol
16 3,5,5-Trimethylcyclohex-2-en-1-one (isophorone)
17 Lilac aldehyde I
18 2,6,6-Trimethylcyclohex-2-ene-1,4-dione (4-oxoisophorone)
19 Lilac aldehyde II
0 Lilac aldehyde III

21 Nonan-1-ol
2 Ethyl octanoate
3 Decanal
4 Decan-1-ol
5 Ethyl nonanoate
6 Ethyl decanoate

a Relative standard deviation (RSD) of peak area, n = 10.
Fig. 1. HS-SPME–GC × GC–TOF-MS chromatogram of honey volatiles (Corsica sam-
ple) with marked markers. For the description of analytes see Table 1.

gin. These selected markers can be grouped as follows: (i) aldehydes
(hexanal, heptanal, octanal, nonanal, decanal); (ii) esters (ethyl
heptanoate, ethyl octanoate, ethyl nonanoate, ethyl decanoate);
(iii) sulphides (methylsulfanyldisulfanylmethane); (iv) alcohols
(hexan-1-ol, heptan-1-ol, octan-1-ol, nonan-1-ol, decan-1-ol);
(v) oxygenated aromatics (benzaldehyde, 2-phenylacetaldehyde,
1-phenylethanone, 2-phenylethanol); (vi) aromatic hydrocar-
bons (1-methyl-4-propan-2-yl-benzene (p-cymene)); (vii) ethers
(furan-2-carbaldehyde (furfural), lilac aldehyde I, lilac aldehyde
II, lilac aldehyde III); (viii) ketones (3,5,5-trimethylcyclohex-2-
en-1-one (isophorone), 2,6,6-trimethylcyclohex-2-ene-1,4-dione
(4-oxoisophorone)). Interestingly, these selected volatiles are typ-

ically responsible for various flavour notes—aldehydes: green,
sweet, citrus, floral, grape; esters: fruity, citrus, grape; alcohols:
green; oxygenated aromatics: almond, floral, sweet, herbal, rose;
aromatic hydrocarbons: citrus; ethers: woody, sweet, fruity, flow-
ery; ketones: sweet, camphor-like, woody [29,30].

1tR (s) 2tR (s) RI RSD (%)a

374 0.79 803 6.9
410 1.49 836 3.9
434 1.04 870 5.1
467 0.81 903 8.2
530 1.02 972 4.8
533 1.25 972 6.4
542 0.98 984 9.2
566 0.81 1009 2.9
590 0.82 1034 4.7
611 1.27 1056 3.2
626 1.00 1072 6.8
632 1.24 1078 2.1
650 0.77 1068 12
662 0.81 1110 5.1
674 1.79 1123 5.7
686 1.04 1134 4.8
698 0.92 1148 9.1
704 1.13 1153 3.6
704 0.93 1159 9.2
716 0.96 1172 8.9
719 0.99 1173 6.8
740 0.77 1197 7.0
752 0.81 1208 5.1
806 0.96 1273 7.6
824 0.77 1296 9.5
905 0.77 1396 10
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The list of the above compounds, their first (1tR) and second (2tR)
imension retention times, retention indices (RI) and repeatability
f the measurement (expressed as relative standard deviation, RSD,
) is given in Table 1.

.2. Chemometric analysis

Prior to the chemometric analysis employing PCA (unsupervised
attern recognition technique) and ANN (supervised pattern recog-
ition technique) the raw data (374 × 26) presented in the form
f absolute peak intensities (deconvoluted total ion current, DTIC)
ere pre-processed. In the first step, they were scaled using the

ange transformation, i.e. the lowest value of given variable was
ssigned to “0” and the highest one to “1”, whereas the remain-
ng entries were numbers between these values within the interval
0,1). This procedure transformed all data to a uniform range of
ariability. In the next step, logarithmic transformation of the data
as carried out. A general advantage of this transformation was

eduction of differences in variation of experimental data [26,31].
n our study, the differences of absolute intensities of particular
olatiles ranged between 2 and 5 orders of magnitude. Under these
onditions, transformation is important to support the contribu-
ion of even small variables (small GC peaks in particular case) to
he classification of samples.

.2.1. Principal component analysis
Principal component analysis (PCA) represents one of the most

requently used chemometric tools mainly due to its very attrac-
ive features. PCA allows relatively easy projecting of data from a
igher to a lower dimensional space and then reconstructing them
ithout any preliminary assumptions about their distribution [32].

n the preliminary data analysis, PCA was performed to investigate
ny possible clustering of samples on the basis of geographical ori-
in. As Fig. 2 shows, using PCA, the honeys were divided into two
roups described as “Corsica” and “non-Corsica”. The first princi-
al component (PC1) accounted for 26.0% and 28.8% variance for
ear 2006 and 2007, respectively, while the second principal com-
onent (PC2) contributed for 14.7% and 18.4% for these years. For

erged data generated in years 2006 and 2007, the PC1 and PC2
ere 27.2% and 16.3%, respectively. Considering the eigenvalues >1,

even, the most important, PCs contributed to 77% of total vari-
nce. The variables with the greatest weights identified by PCA are
ttributed to peaks no. 5–8, 11, 13, 14, 16–26 with factor coordinates

Fig. 2. PCA clustering: (A) year 2006 (�: Corsica, �: non-C
1216 (2009) 1458–1462 1461

either >0.6 or <−0.6, while the remaining peaks (no. 1–4, 9, 10, and
12) were of slightly less importance (smaller weight) with factor
coordinates either 〈0.46;0.58〉 or 〈−0.49;−0.59〉. These PCA results
document that the differences between Corsican and non-Corsican
honey samples are, although small, not insignificant. Under these
conditions, we decided to employ artificial neural networks, which
are applicable in situations in which a relationship between the
predictor variables (independents, inputs) and predicted variables
(dependents, outputs) exists, even when that relationship is very
complex [33].

3.2.2. Artificial neural networks
Nowadays, the most common neural network approach to

regression-type problems is multilayer perceptrons (MLP) [34,35].
An ANN-MLP based on the back propagation was employed to pre-
dict the origin of honey samples based on the pattern of their
volatiles. In the first step, the data set was randomly divided by
the software into three subsets: (i) training subset (1/2 of data),
which is used to accomplish the network model training; (ii) selec-
tion subset (1/4 of data) for checking the network quality within the
training process to avoid network overtraining; (iii) test subset (1/4
of data) representing the tool to assess the quality of the generated
model. The last subset was not used to create the ANN model but
was employed for the final validation of the respective ANN model.
(Note: The subset ratio can be manually changed if higher or lower
proportion of each subset is needed.) Intelligent Problem Solver was
employed for the analysis of data. The search for an appropriate
ANN model was restricted only to MLP networks. In the total, 50
networks were tested of which the best ten were retained. The net-
work architecture created for the honey data matrix included an
input layer, one hidden layer of neurons, and an output layer. The
input layer consisted of 26 neurons (marker compounds), 15–16
neurons in hidden layer (depending on the ANN model), and one
neuron in the output layer (origin classification). The ANN was
trained using selected parameters from the data sets followed by
the validation using an independent data set to estimate the honey
origin (Corsica vs. non-Corsica). The training started with differ-
ent initial random weights, and was optimised during the training.

Typically, the learning process continues epoch-by-epoch (through
single complete training processes) until the synaptic weights and
bias level of the network are stabilised [35]. In this study, the net-
work was trained by a back propagation algorithm (100 epochs)
followed by a conjugate gradient algorithm (20 epochs). Finally, a

orsica); (B) year 2007 (�: Corsica, ♦: non-Corsica).
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Table 2
Overall summary of ANN-MLP models.

Sampling year MLP model Recognition ability [%] Prediction ability [%] Classification ability [%]

Training subset Selection subset Test subset All subsets
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[
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[

[

[32] I. Stanimirova, M. Daszykowski, B. Walczak, Talanta 72 (2007) 172.
2006 26:26–16–1:1 98.9
2007 26:26–15–1:1 100

2006 + 2007 26:26–16–1:1 99.5

etwork with the smallest error (misclassification of sample origin)
as selected. For the separated data sets from the first and second
arvest, the MLP network consisted of 26 neurons in the input layer
both harvests), 16 and 15 neurons in the hidden layer for year 2006
nd 2007, respectively, and one neuron (both harvests) in the output
ayer.

The success of the model to classify known objects can be eval-
ated in different ways: (i) recognition ability as the percentage of
he samples in the training set (in the case of ANN both training
nd selection subsets) correctly classified during the modeling step;
ii) prediction ability as the percentage of the samples in the test
et correctly classified by using the developed model during the
raining step; (iii) classification ability as the percentage of the sam-
les in both training and test sets (in the case of ANN the training,
election, and test subsets) correctly classified by the model [26].
he prediction ability of the models for the first and second har-
est was 93.3% and 91.7%, respectively, and the classification ability
6.2% and 96.4%, respectively. The model created for the first har-
est (2006) was used to predict samples from the second harvest
2007). The 2006 data were used for formation of respective ANN

odel with a training, selection, and test (validation) subsets in a
atio of 2:1:1, followed by the testing using the 2007 data as a next
alidation test set. The prediction ability of this validation set con-
aining 2007 data was somewhat lower (81.3%), probably due to a
arge variation in the profiles of honey volatiles between these two
ears possibly caused by different weather conditions in the two
arvest years. A low prediction ability (81.9%) was also obtained
hen the model from the second harvest (2007) was used to pre-
ict samples from the first harvest (2006). A more reliable approach
eems to be a model that consists of data of a 2-year (and, if possi-
le, even more years) sampling. Under these conditions, each subset
ontains representative samples from both harvests. Employing this
trategy the MLP network consisted of 26 neurons in the input
ayer, 16 neurons in the hidden layer, and one neuron in the output
ayer. The prediction and classification abilities of this model were
4.6% and 96.5%, respectively. The overall summary of particular
NN-MLP models is presented in Table 2.

. Conclusions

In this model study, we used HS-SPME–GC × GC–TOF-MS as a
rofiling technique in the analysis of honey volatiles, followed by
hemometric analysis employing ANN-MLP with the aim to distin-
uish Corsican honeys (protected denomination of origin region)
mong honeys harvested in other European countries. Follow-
ng groups/volatiles (markers) were shown to have the highest
iscriminant efficiency: (i) aldehydes (octanal, nonanal, decanal);
ii) esters (ethyl heptanoate, ethyl octanoate, ethyl nonanoate,
thyl decanoate); (iii) sulphides (methylsulfanyldisulfanylmethane
dimethyl trisulfide)); (iv) alcohols (heptan-1-ol, octan-1-ol, nonan-
-ol, decan-1-ol); (v) oxygenated aromatics (benzaldehyde); (vi)

thers (lilac aldehyde I, lilac aldehyde II, lilac aldehyde III); (vii)
etones (3,5,5-trimethylcyclohex-2-en-1-one (isophorone), 2,6,6-
rimethylcyclohex-2-ene-1,4-dione (4-oxoisophorone)).

The results indicate that this approach was successful, fitting
o the traceability purpose. The best prediction and classification

[

[
[

93.9 96.2
91.7 96.4
94.6 96.5

abilities of the ANN-MLP model were obtained when the data from
the two honey harvests were merged. Adding the data from more
harvests would probably further improve the performance of this
chemometric strategy.
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