4. Non ideal flow, residence time distribution

* The three main reactor types developed thus far - batch,
continuous-stirred-tank, and plug-flow reactors - are useful
for modeling many complex chemical reactors.

 Up to this point we have neglected a careful treatment of
the fluid flow pattern within the reactor.

* In this lecture we explore some of the limits of this
approach and develop methods to address and overcome
some of the more obvious limitations.



Deviation from the two ideal flow patterns can be caused by
channeling of fluid, by recycling of fluid, or by creation of
stagnant regions in the vessel.
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If we know precisely what is happening within the vessel,
thus if we have a complete velocity distribution map for the
fluid in the vessel, then we should, in principle, be able to
predict the behavior of a vessel as a reactor. Unfortunately,
this approach is impractical, even in today's computer age.



Residence-Time Distribution : Definition

* Consider an arbitrary reactor with single feed and effluent
streams depictedin the following figure

* Without solving for the entire flow field, which might be
quite complex, we would like to characterize the flow
pattern established in the reactor at steady state.

* The residence-time distribution (RTD) of the reactor is one
such characterization or measure of the flow pattern.



* Imagine we could slip some inert tracer molecules into the
feed stream and could query these molecules on their exit
from the reactor as to how much time they had spent in the

reactor.
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Figure 1 - RTD Experimental Setup



 Some of the tracer molecules might happen to move in a
very direct path to the exit; some molecules might spend a
long time in a poorly mixed zone before finally ending their
way to the exit.

* Due to their random motions as well as convection with the
established flow, which itself might be turbulent, we would
start recording a distribution of residence times and we
would create the residence-time probability density or
residence-time distribution.

* If the reactor is at steady state, and after we had collected
sufficient residence-time statistics, we expect the residence-
time distribution to also settle down to a steady function.



Continuous-stirred-tank reactor - CSTR

We next examine again the well-stirred reactor.
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Consider the following step-response experiment: a clear fluid with
flowrate \/ enters a well-stirred reactor of volume\/

At time zero we start adding a small flow of a tracer to the feed stream
and measure the tracer concentration in the effluent stream.

We expect to see a continuous change in the concentration of the
effluent stream until, after along time, it matches the concentration of
the feed stream.
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« Assuming constant density, the differential equation
governing the balance of red dye, c;, in the reactor follows
from equation
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Cumulative Residence Time Distribution function

(F — function)
F(7z) — The fraction of fluid of the effluent stream
which has been in the reactor time less than =
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Residence Time Distribution (RTD) function (E- function)

E(7) — The fraction of fluid of the effluent stream
which has been in the reactor in time interval (7 ;7 +d7)
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Relationship between the E(7) and F(z) functions



Plug flow reactor can be represented by a cascade of small CSTR
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With the initial condition , the solution becomes (integration
of linear differential equation by integrating factor):
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Calculation of the integral for the first reactor where
Cs (n—1t) =c; = constant

and then for the successive ones yields the final result:
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If the E(t) function is calculated, we obtain
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The last equation is called the Poisson distribution function
(see figure below).




Fig. Residence time distribution E,(7) curves for several
cascades of N equal CSTR reactors.



If the slope of the F(7) curves is calculated from E(z) function
near the inflection point (i.e. at =7 ), we find that it is given

by NN+1 e—N

N!' 7
Now, according to the Stirling’s rule we have for N>5 within
error of 2 % (see Annexe 1)
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Introduction of this approximation into the former equation
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This result also illustrates the fact that the F(z) curve
becomes steeper as N increases.




Plug flow reactor can be represented also by a dispersion model

inlet flux of i-th species
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Balance of red component in the volume becomes
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D, is a ” dispersion coefficient ” which must be determined
experimentally



Representation of the dispersion (dispersed plug flow) model.

Fluctuations due to different flow
Flat velocity velocities and due to molecular
profile i and turbulent diffusion
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Together with boundary

z=1L, D, =0

and initial conditions t=0,0<z<L,c, =0

Outlet concentration of red component is given by (see
Annexe 2)
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Therefore the cumulative residence time distribution F,(7)
curves for PFR with dispersion are given by
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Fig. Cumulative residence time distribution F,.,(7) curves for
PFR with dispersion



We can differentiate F..(? equation to obtain the curve
for dispersed plug-flow Residence Time Distribution
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Comparison of the cascade and the dispersion
models
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1-D pseudo homogenous model with axial dispersion
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b) Conversion(x) = X,(x) =1 - Y,(x) for various values of Pe
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Y,(x) (solid lines) and X,(x) (dashed lines) in isothermal reactor
with axial dispersion and 15t order kinetics
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Annexe 1
Stirling’s formula

There exists an approximation due to Stirling (James Stirling, British mathematician
(1692-17707), that is very useful in the evaluation of factorials of large mumbers. If can be
derived in several ways. For example, the Gamma function is defined by
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The accuracy of Stirling’s formula is confirmed for large 7 in the table below:

n n! Stirling rel. error, %
2 1913004351 4049782
10 3628800 3598695619 0.829596

20 2.4329E+18 | 2.42279E+18 | 0.415765
50 3.0414F+64 | 3.03634E+64 | 0166526
100 | 9.3326E+157 | 9.3248F+157 | 0.083298




Anneze 1
Ealance of red component in the volume AF, becomes
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Cruflet concentration of red compenent is given by
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where T is the average residence time and Pe stands for Peclet oumber.



