9. Kinetics of catalytic reactions

homogeneous catalysis

- > Ozone decomposition in the presence of CI
- SO₂ oxidation by NO_x
- Esterification catalyzed by acids or bases
- Enzymatic catalysis

heterogeneous catalysis

- NH₃, CH₃OH production
 SO₂ to SO₃ oxidation
 HDS, HDN processes
- Fluid Catalytic Cracking
- > Hydrogenation

Polymerization (Ziegler-Natta catalysts, metallocens)

 $20_3 \Rightarrow 30_2$

Catalytic cycle

Non catalytic x catalytic reaction

Homogeneous x Heterogeneous Catalysts

		Homogeneous	Heterogeneous	
Active		All atoms Surface atoms		
sites	Concentration	Low	High (variable)	
	Diffusion disguises No	Importa	nt	
	Reaction conditions	50-200 °C200-100	0 °C	
	Application	Limited	Large	
Characterization	Structure, composition Modification Temperature stability	Well defined Easy Low	No clear defintion Difficult High	
Separation	- F,	Difficult	Easy	
Pacyclina	Eossible	Eosciblo	packed beds	
necyching	i Easinie	i casibie		

Reactant(s)	Product	Typical catalyst(s)	Global Production/t year ⁻¹
Crude oil	Hydrocarbon fuels	Platinum/silica-alumina Platinum/acidic alumina Metal-exchanged zeolites	1*10 ⁹
SO ₂ , O ₂	Sulphuric acid	V ₂ O ₅	1.4*10 ⁸
N ₂ , H ₂	Ammonia	Fe	9*10 ⁷
NH ₃ , O ₂	Nitric acid	Pt/Rh	2.5* 10 ⁷
CO, H ₂	Methanol	Cu/ZnO	1.5*10 ⁷
C_2H_4, O_2	Ethylene oxide	Ag	1*10 ⁷
Unsaturated vegetable oils, H ₂	Hydrogenated vegetable oils	Ni	8*10 ⁶
C ₂ H ₄	Polyethylene	Cr(II), Ti(III)	6*10 ⁶
CH ₃ OH, O ₂	Formaldehyde	Mixed Fe, Mo oxides	5*10 ⁶
C ₃ H ₆ , NH ₃ , O ₂	Acrylonitrile	Mixed Bi, Mo oxides	3*10 ⁶
o -Xylene, O ₂	Phthalic anhydride	V ₂ O ₅	4*10 ⁶
n-Butane, O ₂	Maleic anhydride	V ₂ O ₅	4*10 ⁵

Catalyst	Reaction
Metals (e.g., Ni, Pd, Pt, as powders or on supports) or metal oxides (e.g., Cr_2O_3)	C=C bond hydrogenation, e.g., olefin + $H_2 \rightarrow$ paraffin
Metals (e.g., Cu, Ni, Pt)	C=O bond hydrogenation, e.g., acetone + $H_2 \rightarrow$ isopropanol
Metal (e.g., Pd, Pt)	Complete oxidation of hydrocarbons, oxidation of CO
Fe (supported and promoted with alkali metals)	$3H_2 + N_2 \longrightarrow 2NH_3$
Ni	$\rm CO$ + 3 $\rm H_2 \longrightarrow \rm CH_4$ + $\rm H_2O$ (methanation)
Fe or Co (supported and promoted with alkali metals)	$CO + H_2 \rightarrow paraffins + olefins + H_2O$ + CO_2 (+ other oxygen-containing organic compounds) (Fischer-Tropsch reaction)
Cu (supported on ZnO, with other components, e.g., $\mathrm{Al}_2\mathrm{O}_3$)	$CO + 2H_2 \rightarrow CH_3OH$
Re + Pt (supported on η -Al ₂ O ₃ or γ -Al ₂ O ₃ promoted with chloride)	Paraffin dehydrogenation, isomerization and dehydrocyclization

Catalyst	Reaction
Solid acids (e.g., SiO_2 - Al_2O_3 , zeolites)	Paraffin cracking and isomerization
γ -Al ₂ O ₃	Alcohol \rightarrow olefin + H ₂ O
Pd supported on acidic zeolite	Paraffin hydrocracking
Metal-oxide-supported complexes of Cr, Ti or Zr	Olefin polymerization, e.g., ethylene \rightarrow polyethylene
Metal-oxide-supported oxides of W or Re	Olefin metathesis, e.g., 2 propylene → ethylene + butene
Ag(on inert support, promoted by alkali metals)	Ethylene + 1/2 $O_2 \rightarrow$ ethylene oxide (with CO_2 + H_2O)
V_2O_5 or Pt	$2 \text{ SO}_2 + \text{O}_2 \rightarrow 2 \text{ SO}_3$
$\mathrm{V_2O_5}$ (on metal oxide support)	Naphthalene + $9/2O_2 \rightarrow phthalic anhydride$ + $2CO_2 + 2H_2O$
Bismuth molybdate	Propylene + $1/2O_2 \rightarrow \text{acrolein}$
Mixed oxides of Fe and Mo	$CH_3OH + O_2 \rightarrow \text{formaldehyde}$ (with $CO_2 + H_2O$)
Fe_3O_4 or metal sulfides	$H_2O + CO \rightarrow H_2 + CO_2$

Steps in a catalytic reaction

- 1) Mass transfer of reactants to the external surface of catalyst
- 2) Mass transfer of reactants in porous structure of catalyst
- 3) Adsorption of reactants
- 4) Surface reaction (+ migration)
- 5) *Desorption of products*
- 6) Mass transfer of products in porous structure of catalyst
- 7) Mass transfer of reactants from the external surface of catalyst

The transport steps (1,2,6,7) depend on T, P, composition, flow rates, pore size,

The chemical steps (3,4,5) are dependent on T, P, composition.

Elementary steps of catalytic reaction

Mechanisms in heterogeneous catalysis

Adsorption x Chemisorption

- $E_{\rm mc},\,E_{\rm mp}$ activation energy of migration in adsorbed and chemisorbed state
- E_D energy of dissociation of molecule A_2
- E_d energy of desorption of A_2
- E_a energy of activation of transition from adsorbrd to chemisorbed state

Adsorption x Chemisorption

	Adsorption		Chemisorption
Principal	van der Waals forces no electron transfer !		covalent or ionic bonds electron transfer
Adsorbent	all solids		specific sites
Adsorbat gases T <	< Tc	reactive	components
Temperature	low		higher
Enthalpy	10-40 kJ/mol		80-600 kJ/mol
Rate	high		depends on T
Activation energy Occupancy	low multilayer		high monolayer
Reversibility	YES		YES but
Use	BET method pore size distributio	on	surface concentration of active sites

Chemisorption of fluid phase molecule (adsorbat)

Surface occupancy(Θ)

 $\Theta_{i} = \frac{\text{Number of sites occupied by i-th component}}{\text{Total number of sites}}$ $0 < \Theta_{i} < 1$

Associative x Dissociative chemisorption

Adsorption (chemisorption) isotherm – Surface occupancy as a function of partial pressure of given component at constant temperature

Irving Langmuir

- 1920 adsorption isotherm
 - kinetics of catalytic reactions on ideal surfaces
- 1932 Nobel Prize

Langmuir adsorption isotherm

Brunauer-Emmett-Teller (BET) adsorption isotherm

Associative adsorption on ideal catalytic surface

$$A_{(g)} + * \qquad \stackrel{k_a}{\longleftarrow} \qquad A^*$$

Rate of chemisorption = $k_a \cdot P_A \cdot (1 - \Theta_A)$

Rate of desorption = $k_d \cdot \Theta_A$ At equilibrium

$$k_a \cdot p \cdot (1 - \Theta_A) = k_d \cdot \Theta_A$$
 $(K_A = k_a/k_d)$

$$\frac{\Theta_{A}}{(1 - \Theta_{A})} = K_{A} \cdot P_{A} \quad \Longrightarrow \quad \Theta_{A} = \frac{K_{A} P_{A}}{1 + K_{A} P_{A}}$$

Asociative chemisorption

Langmuir adsorption (chemisorption) isotherm

Multicomponent associative chemisorption on ideal catalytic surface

$$A_{(g)} + * \stackrel{k_{a}}{\longleftrightarrow} A^{*} \qquad B_{(g)} + * \stackrel{k_{b}}{\longleftrightarrow} B^{*}$$
Occupancy of A
$$\Theta_{A} = \frac{K_{A}.p_{A}}{1 + K_{A}.p_{A} + K_{B}.p_{B}}$$
Occupancy of B
$$\Theta_{B} = \frac{K_{B}.p_{B}}{1 + K_{A}.p_{A} + K_{B}.p_{B}}$$

 $K_{A} = k_{a} / k_{d}$ $K_{B} = k_{b} / k_{d}$

Dissociative chemisorption on ideal catalytic surface

$$A_{2(g)} + 2 * \xrightarrow{k_a}_{k_d} \xrightarrow{k_a}_{k_d}$$

Rate of chemisorption = $k_a \cdot P_A \cdot (1 - \Theta_A)^2$

Rate of desorption =
$$k_d \cdot \Theta_A^2$$

At equilibrium

$$k_a \cdot p \cdot (1 - \Theta_A)^2 = k_d \cdot \Theta_A^2$$
 (K_A = k_a/k_d)

$$\frac{\Theta_{A}^{2}}{(1-\Theta_{A})^{2}} = K_{A} \cdot P_{A} \quad \Longrightarrow \quad \Theta_{A} = \frac{\sqrt{K_{A}P_{A}}}{1+\sqrt{K_{A}P_{A}}}$$

Isotherms

Langmuir

(chemisorption, adsorption, monolayer, micropores)

$$\frac{n_A}{\left(n_*\right)} = \Theta_A = \frac{K_A P_A}{1 + K_A P_A}$$

 $\frac{\left(n_{A}\right)_{adsorbed}}{\left(n_{*}\right)} = \Theta_{A} = K_{A}P_{A}$

 $\frac{\left(n_{A}\right)_{adsorbed}}{\left(n_{*}\right)} = \Theta_{A} = K_{A} \left(P_{A}\right)^{\frac{1}{n}}$

Henry

(chemisorption, adsorption, low occupancy)

Freundlich

(chemisorption, adsorption, non ideal)

Temkin

(chemisorption, non ideal)

$$\frac{(n_A)_{adsorbed}}{(n_*)} = \Theta_A = \alpha_A \ln(\beta_A P_A)$$
$$\frac{P_A}{P_A} = \frac{1}{1 + \frac{(C-1)}{2}} \frac{P_A}{P_A}$$

Brunauer-Emmett-Teller (BET) (adsorption, multilayer)

$$\frac{\overline{(n_A)_{ads}}(P_A^o - P_A)}{P} = \frac{\overline{n_m C}}{n_m C} + \frac{\overline{n_m C}}{n_m C} \frac{\overline{P_A}}{P_A}$$

Virial (adsorption, multilayer)

$$\frac{P_A}{\mathbf{R}.T} = \Theta_A (1 + a_1 \Theta_A + a_2 \Theta_A^2 + \dots)$$

Brunauer-Emmett-Teller (BET)

Extention of Langmuir model

Assumptions:

adsorption in multilayer s, 1^{st} layer interaction between adsorbent and adsorbat, in 2^{nd} and further layers condensation-like interaction

$$\frac{P_A}{(n_A)_{ads}(P_A^o - P_A)} = \frac{1}{n_m C} + \frac{(C-1)}{n_m C} \frac{P_A}{P_A}$$

Mesoporous alumina

Temperature od calcination : 3,3 nm (450 °C) - 4,5 nm (600 °C) - 5,1 nm (800 °C)

Reaction rate per mass

$$r_{M} = \frac{1}{m}r = \frac{1}{m}\frac{d\xi}{dt} = \frac{1}{m}\frac{1}{v_{i}}\frac{dn_{i}}{dt} \quad \text{mole.kg}^{-1}.s^{-1}$$
$$r_{M,k} = \frac{1}{m}r_{k} = \frac{1}{m}\frac{d\xi_{k}}{dt}$$

Reaction rate per surface

$$r_{s} = \frac{1}{S}r = \frac{1}{S}\frac{d\xi}{dt} = \frac{1}{S}\frac{1}{v_{i}}\frac{dn_{i}}{dt} \quad \text{mole.m}^{-2}.s^{-1}$$
$$r_{s,k} = \frac{1}{S}r_{k} = \frac{1}{S}\frac{d\xi_{k}}{dt}$$

Reaction rate per active center (turnover number)

$$r_{RS} = \frac{1}{n_{RS}} r = \frac{1}{n_{RS}} \frac{d\xi}{dt} = \frac{1}{n_{RS}} \frac{1}{v_i} \frac{dn_i}{dt} \qquad s^{-1}$$
$$r_{RS,k} = \frac{1}{n_{RS}} r_k = \frac{1}{n_{RS}} \frac{d\xi_k}{dt}$$

Reaction rate of catalytic reactions

- Langmuir-Hishelwood ideal surface
- Rate of elementary steps
- Rate determining step x steady state hypothesis

Reaction rate of catalytic reactions

Langmuir-Hishelwood ideal surface

• Rate of elementary steps

• Rate determining step x steady state hypothesis

CO oxidation on Pt

Elementary steps of catalytic CO oxidation on Pt

1. CO chemisorption

$$\mathbf{CO}_{(g)} + [*] \leftrightarrow \mathbf{CO}^{*} \qquad \qquad r_1 = k_{f,1} P_{CO} \Theta_* - k_{b,1} \Theta_{CO}$$

2. O₂ dissociative chemisorption

* - Pt surface atoms = Catalytic active centre

$$\mathbf{O}_{2(g)} + \mathbf{2}[*] \leftrightarrow \mathbf{2O}^* \qquad \qquad r_2 = k_{f,2} P_{O_2} \Theta_*^2 - k_{b,2} \Theta_O^2$$

3. Surface reaction between CO* and O*

$CO^* + O^* \leftrightarrow *CO_2 + *$	$r_{3} = k_{f,3} \Theta_{CO} \Theta_{O} - k_{b,3} \Theta_{CO_{2}} \Theta_{*}$
--	---

4. CO₂ desorption into gas phase

*CO₂
$$\leftrightarrow$$
 CO_{2(g)} + * $r_4 = k_{f,4} \Theta_{CO_2} - k_{b,4} P_{CO_2} \Theta_*$

- P_i partial pressures of gaseous components [Pa]
- Θ_i occupancy (coverage) of the i-th species [-]

 $k_{f,j}, k_{b,j}$ - reaction rate constants

 r_j – rate of the j-th elementary step [mol/kg katalyzátoru/s

mol/molPt/s= 1/s]

Rate determining step in steady state

Relation between overall reaction rate and the rate of i-th elementary step determines the stoichiometric number σ_i (do not confuse with stoichiometric coefficient !)

$$r = \frac{r_i}{\sigma}$$

t t	
	$\sigma_{_i}$
$CO_{(g)} + [*] \leftrightarrow CO^*$	2
$O_{2(g)} + 2[*] \leftrightarrow 2O^*$	1
$CO^* + O^* \leftrightarrow *CO_2 + *$	2
$*CO_2 \leftrightarrow CO_{2(g)} + *$	2
$2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$	

M. Boudart, 1968, in "Kinetics of Chemical Processes":

The stoichiometric number of i-th elementary step, σ is the number of times that this elementary step, as written, must be repeated, in the closed sequence, in order to obtain by summation of all steps the overall stoichiometric equation for reaction, as written.

Rate determining step: surface reaction

$$\begin{split} K_{co} &= \frac{k_{f,1}}{k_{b,1}} = \frac{\Theta_{co}}{P_{co}\Theta_*} \quad K_{o2} = \frac{k_{f,2}}{k_{b,2}} = \frac{\Theta_o^2}{P_{o_2}\Theta_*^2} \quad K_{co_2} = \frac{k_{b,4}}{k_{f,4}} = \frac{\Theta_{co_2}}{P_{co_2}\Theta_*} \\ \Theta_* &+ \Theta_{co} + \Theta_o + \Theta_{co_2} = 1 \\ \Theta_* &= \frac{1}{1 + K_{co}P_{co} + \sqrt{K_{o_2}P_{o_2}} + K_{co_2}P_{co_2}} \\ \Theta_{co} &= \frac{K_{co}P_{co}}{1 + K_{co}P_{co} + \sqrt{K_{o_2}P_{o_2}} + K_{co_2}P_{co_2}} \\ \Theta_o &= \frac{\sqrt{K_{o_2}P_{o_2}}}{1 + K_{co}P_{co} + \sqrt{K_{o_2}P_{o_2}} + K_{co_2}P_{co_2}} \\ \Theta_{co_2} &= \frac{K_{co_2}P_{co_2}}{1 + K_{co}P_{co} + \sqrt{K_{o_2}P_{o_2}} + K_{co_2}P_{co_2}} \\ \Theta_{co_2} &= \frac{K_{co_2}P_{co_2}}{1 + K_{co}P_{co} + \sqrt{K_{o_2}P_{o_2}} + K_{co_2}P_{co_2}} \end{split}$$

Reaction rate as a function of measurable variables

$$r_{3} = k_{f,3} \Theta_{CO} \Theta_{O} - k_{b,3} \Theta_{CO_{2}} \Theta_{*} = \frac{k_{f,3} K_{CO} \sqrt{K_{O_{2}}} P_{CO} \sqrt{P_{O_{2}}} - k_{b,3} K_{CO_{2}} P_{CO_{2}}}{\left[1 + K_{CO} P_{CO} + \sqrt{K_{O_{2}} P_{O_{2}}} + K_{CO_{2}} P_{CO_{2}}\right]^{2}}$$

Example

$C_2H_5OH_{(g)}(A_1) \rightarrow CH_3$	$CHO_{(g)}(A_2) +$	H _(g)	
(A_3)	-	_	

catalysts: CuO, CoO a Cr₂O₃

(Franckaerts J., Froment G.F., Kinetic study of the dehydrogenation of ethanol, Chem. Eng. Sci. 19 (1964) 807-818).

Kinetics

$$r_{M} = \frac{kK_{1} \left(P_{1} - P_{2}P_{3} / K_{eq} \right)}{\left(1 + K_{1}P_{1} + K_{2}P_{2} \right)^{2}}$$

 r_M (mol.g⁻¹.hod⁻¹), P_i (bar), k (mol.g⁻¹.hod⁻¹), K_{eq} (bar), K_i (bar⁻¹).

Task: to estimate on the basis of experimental data kinetic and adsorption parameters k, K_1, K_2 **EXPERIMENTAL SET-UP**

Franckaerts J., Froment G.F., Kinetic study of the dehydrogenation of ethanol, Chem. Eng. Sci. 19 (1964) 807-818

FIG. 1. Apparatus: 1,2, feed burettes; 3, metering pump; 4, thermocouples; 5, ice-bath; 6, mV-recorder; 7, reactor; 8, reactor-mantle; 9,10, variable transformers; 11,13, manometers; 12, pressure regulating device; 14, cooler; 15, cooling unit; 16, circulating pump; 17, sampling flask; 18, liquid air trap; 19, saturator, eventually also absorber in periods between sampling; 20, wet test meter; 21, flowmeters for air and nitrogen.

EXPERIMENTAL DATA

W / F_1^{o}	Р	y_1^o	y_4^o	y_2^o	Т	X_{1}
[g.hod/mol]	[bar]	[-]	[-]	[-]	[°C]	[-]
1,60	7,0	0,865	0,135	0,0	225,0	0,066
0,80	4,0	0,865	0,135	0,0	225,0	0,083
0,40	3,0	0,865	0,135	0,0	225,0	0,055
1,0	1,0	0,865	0,135	0,0	225,0	0,118
1,0	1,0	0,750	0,130	0,119	225,0	0,052
0,40	1,0	0,865	0,135	0,0	225,0	0,060
1,0	1,0	0,732	0,167	0,101	225,0	0,052
0,40	10,0	0,865	0,135	0,0	225,0	0,038
1,60	7,0	0,865	0,135	0,0	250,0	0,149
0,80	4,0	0,865	0,135	0,0	250,0	0,157
0,40	3,0	0,865	0,135	0,0	250,0	0,108
1,0	1,0	0,865	0,135	0,0	250,0	0,218
1,0	1,0	0,672	0,145	0,183	250,0	0,123
0,60	1,0	0,865	0,135	0,0	250,0	0,152
0,80	1,0	0,672	0,145	0,183	250,0	0,106
0,60	10,0	0,865	0,135	0,0	250,0	0,094
1,60	7,0	0,865	0,135	0,0	275,0	0,254
0,80	4,0	0,865	0,135	0,0	275,0	0,262
0,40	3,0	0,865	0,135	0,0	275,0	0,20
1,0	1,0	0,865	0,135	0,0	275,0	0,362
1,0	1,0	0,672	0,145	0,183	275,0	0,230
0,20	1,0	0,865	0,135	0,0	275,0	0,118
0,40	10,0	0,865	0,135	0,0	275,0	0,148
0,40	1,0	0,865	0,135	0,0	275,0	0,196

Solution:

Minimize the objective function:

$$\Phi(k, K_1, K_2) = \sum_{i=1}^{NEXP} \left[X_{1,i}^{exp} - X_{1,i}^{mod}(k, K_1, K_2) \right]^2$$

$$X_{1,i}^{mod}(k, K_1, K_2) \text{ calculated from isothermal catalytic PFR}$$

model:

$$\frac{dX_{1}}{d\left(W / F_{1}^{o}\right)} = r_{M}(X_{1}) \qquad W / F_{1}^{o} = 0, X_{1} = 0$$

ATHENA Visual Studio.

60)	Priklad_9_1.avw - Athena Visual Studio				
Eile	File Edit Model Build View Format Tools VisualKinetics Windows Help				
		이 여 비 👔 🏂 📖 🚲 🛄 📖 🕨 📄 🥙 📴 🖬 🍝 🗄			
	Priklad_9_1.avw				
	I Catalytic Ethanol Debydrogenation	Kinetica			
	. cucuryore conduct conjurgenderon	ALICO DO			
	GIODAI KI, KAI, KAZ, KAS, KA4 AS REAL				
	Global TEMP, Press, Ymol(3) As Rea	1			
11	@Connect Variables				
	k1 =Par(1)	! Reaction rate constant			
	KA1=Par(2)	! Adsorption equilibrium constant for ethanol			
	KA2=Par(3)	! Adsorption equilibrium constant for acetaldehyde			
	KA3=Par(4)	! Adsorption equilibrium constant for hydrogen			
	$K\Delta 4=Par(5)$	Adsorption equilibrium constant for water			
	TEMP = V((6) + 272 1500	I Temperature [K]		=	
	TENP - X0(0) + 2/3.1300	: Temperature [K]		-	
	Press = Xu(2)	: Pressure [atm]			
	Ymol(1) = Xu(3)	! Feed ethanol mol. fraction			
	Ymol(2) = Xu(4)	! Feed water mol. fraction			
	Ymol(3) = Xu(5)	! Feed acetaldehyde mol. fraction			
	@Initial Conditions				
	U(1)=0.0				
	AModel Equations				
	GHODEL EQUACIONS				
	DIM PAI, PAZ, PAJ, PA4, REQ, XI, R	R, AUX AS REAL			
	<pre>KEQ = DEXP(-14159.9D0/TEMP+25.2681</pre>	D0)			
	X1 = U(1)				
	AUX = (1.0D0+Ymol(1)*X1)/Press				
	PA1 = Ymol(1)*(1.0D0-X1)/AUX	! Ethanol partial pressure			
	PA2 = (Ymol(3) + Ymol(1) * X1) / AUX	! Acetaldehvde partial pressure			
	PA3 = Ymol(1) * X1/AUX	Hudrogen partial pressure			
	DA - Vesl (2) (AIV	Neter resting another brosser			
	PA4 = ImOI(2) / AOA	: water partial pressure			
	RR = R1*(PA1-PA2*PA3/REQ)/(1.0D0+R	A1*PA1+KA2*PA2+KA3*PA3+KA4*PA4)^2			
	F(1) = RR				
	@Response Model				
	Y(1)=U(1)				
				-	
•				► gal	
-					
Co	mpiler Selected: Intel Visual Fortran	Dec-08-2009 10:55:19 INS Ln 1736 Col 1	WAthena Visual Software, Inc.		

	225 oC	250 oC	275 oC
k1	5.767986E-01 +- 4.112E-01	8.863130E-01 +- 1.668E-01	1.675828E+00 +- 4.225E-01
KA1	4.839934E-01 +- 3.591E-01	4.876108E-01 +- 9.443E-02	3.803293E-01 +- 1.473E-01
KA2	1.011693E+01 +- 7.376E+00	3.044445E+00 +- 9.054E-01	2.812096E+00 +- 1.078E+00

Uveřejněné materiály jsou určeny studentům Vysoké školy chemickotechnologické v Praze jako studijní materiál. Některá textová i obrazová data v nich obsažená

jako studijní materiál. Některá textová i obrazová data v nich obsažená jsou převzata

z veřejných zdrojů. V případě nedostatečných citací nebylo cílem autora/ů záměrně poškodit event. autora/y původního díla.

S eventuálními výhradami se prosím obracejte na autora/y konkrétního výukového materiálu, aby bylo možné zjednat nápravu.

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work. If you have any reservations, please contact the author(s) of the specific

teaching material in order to remedy the situation.