
• The three main reactor types developed thus far - batch,
continuous-stirred-tank, and plug-flow reactors - are useful
for modeling many complex chemical reactors.

• Up to this point we have neglected a careful treatment of
the fluid flow pattern within the reactor.

• In this lecture we explore some of the limits of this
approach and develop methods to address and overcome
some of the more obvious limitations.

12. Non ideal flow, residence time distribution



• Deviation from the two ideal flow patterns can be caused by 
channeling of fluid, by recycling of fluid, or by creation of 
stagnant regions in the vessel.



• If we know precisely what is happening within the vessel, 
thus if we have a complete velocity distribution map for the 
fluid in the vessel, then we should, in principle, be able to 
predict the behavior of a vessel as a reactor. Unfortunately, 
this approach is impractical, even in today's computer age.



Residence-Time Distribution : Definition

• Consider an arbitrary reactor with single feed and effluent 
streams depicted in the following figure

• Without solving for the entire flow field, which might be 
quite complex, we would like to characterize the flow 
pattern established in the reactor at steady state.

• The residence-time distribution (RTD) of the reactor is one 
such characterization or measure of the flow pattern.



• Imagine we could slip some inert tracer molecules into the 
feed stream and could query these molecules on their exit 
from the reactor as to how much time they had spent in the 
reactor.



• Some of the tracer molecules might happen to move in a
very direct path to the exit; some molecules might spend a
long time in a poorly mixed zone before finally ending their
way to the exit.

• Due to their random motions as well as convection with the
established flow, which itself might be turbulent, we would
start recording a distribution of residence times and we
would create the residence-time probability density or
residence-time distribution.

• If the reactor is at steady state, and after we had collected
sufficient residence-time statistics, we expect the residence-
time distribution to also settle down to a steady function.



Continuous-stirred-tank reactor - CSTR

We next examine again the well-stirred reactor.



• Consider the following step-response experiment: a clear fluid with 
flowrate Qf enters a well-stirred reactor of volume V.

• At time zero we start adding a small flow of a tracer to the feed stream 
and measure the tracer concentration in the effluent stream.

• We expect to see a continuous change in the concentration of the 
effluent stream until, after a long time, it matches the concentration of 
the feed stream.
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• Assuming constant density, the differential equation
governing the balance of red dye, cR, in the reactor follows
from equation
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• We introduce average residence time
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• Solution of red color dye balance becomes
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Cumulative Residence Time Distribution function  

(F – function)

F() – The fraction of fluid of the effluent stream 

which has been in the reactor time less than 



Residence Time Distribution (RTD) function  (E– function)

E() – The fraction of fluid of the effluent stream 

which has been in the reactor in time interval ( ; +d)
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Relationship between the E() and F() functions
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Plug flow reactor can be represented by a  cascade of small CSTR
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With the initial condition , the solution becomes (integration
of linear differential equation by integrating factor):
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Calculation of the integral for the first reactor where

and then for the successive ones yields the final result:
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Fig. Cumulative residence time distribution FN() curves for
several cascades of N equal CSTR reactors.



If the E() function is calculated, we obtain
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The last equation is called the Poisson distribution function
(see figure presented on the next slide).



Fig. Residence time distribution EN() curves for several
cascades of N equal CSTR reactors.



If the slope of the F() curves is calculated from E() function
near the inflection point (i.e. at ), we find that it is given
by
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Now, according to the Stirling’s rule we have for N>5 within
error of 2 % (see Annexe 1)
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Introduction of this approximation into the former equation
yields:

1
1

( )
22

N N

N N N

N e N
E

N N e


  

 


 

This result also illustrates the fact that the F() curve
becomes steeper as N increases.



Plug flow reactor can be represented also by a  dispersion model
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Balance of red component in the volume becomes
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DR is a ” dispersion coefficient ” which must be determined
experimentally



Representation of the dispersion (dispersed plug flow) model.



Together with boundary
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Outlet concentration of red component is given by (see
Annexe 2)
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Therefore the cumulative residence time distribution FN()
curves for PFR with dispersion are given by
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Fig. Cumulative residence time distribution FPFR() curves for
PFR with dispersion



We can differentiate FPFR() equation to obtain the  curve 
for dispersed plug-flow Residence Time Distribution
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Fig. Residence time distribution EPFR() curves for PFR with
dispersion
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Comparison of the cascade and the dispersion 
models 
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1-D pseudo homogenous model with axial dispersion
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To calculate
a) YA(x)
b) Conversion(x) = XA(x) = 1 - YA(x) for various values of Pe



YA(x) (solid lines) and XA(x) (dashed lines) in isothermal reactor 
with axial dispersion and 1st order kinetics



There exists an approximation due to Stirling (James Stirling, British mathematician (1692-

1770)), which is very useful in the evaluation of factorials of large numbers. It can be 

derived in several ways. For example, the Gamma function is defined by
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