8. Heterogeneous reaction

solid – fluid (liquid, gas)

- > Dissolution of solids (e.g. $MgCO_{3(s)} + HNO_{3(l)}$)
- > Chemical Vapor Deposition (SiH_{4(g)} \rightarrow Si_(s) + 2H₂)
- > Sublimation (U_(s) + 3 $F_{2(g)} \rightarrow UF_{6(g)}$)
- > Reduction of solid oxides (NiO_(s) + H_{2(g)} \rightarrow Ni_(s) + H₂O_(g))
- > Metals oxidation $(Zn_{(s)} + O_{2(g)} \rightarrow ZnO_{(s)})$
- Catalytic reactions

liquid – gas

```
➢ Dissolution with chemical reaction
Cl<sub>2(s)</sub> + 2NaOH<sub>(l)</sub> → NaOCl<sub>(l)</sub> + NaCl<sub>(l)</sub> + H<sub>2</sub>O<sub>(l)</sub>
3NO<sub>2(g)</sub> + H<sub>2</sub>O<sub>(l)</sub> → 2HNO<sub>3(l)</sub> + NO<sub>(g)</sub>
```

- solid solid
- \succ CoO_(s) + Al₂O_{3(s)} \rightarrow CoAl₂O_{4(s)}

Catalytic heterogeneous reaction

Heat and mass transfer phenomena affect global reaction rate

Catalytic reactions

homogeneous catalysis

- Ozone decomposition in the presence of CI
- SO₂ oxidation by NO_x
- Esterification catalyzed by acids or bases
- Enzymatic catalysis

heterogeneous catalysis

- ≻NH₃, CH₃OH production
- > SO₂ to SO₃ oxidation
- >HDS, HDN processes
- Fluid Catalytic Cracking
- > Hydrogenation

Polymerization (Ziegler-Natta catalysts, metallocens)

 $2O_3 \Rightarrow 3O_2$

Reactant(s)	Product	Typical catalyst(s)	Global Production/t year ⁻¹
Crude oil	Hydrocarbon fuels	Platinum/silica-alumina Platinum/acidic alumina Metal-exchanged zeolites	1*10 ⁹
SO ₂ , O ₂	Sulphuric acid	V ₂ O ₅	1.4*10 ⁸
N ₂ , H ₂	Ammonia	Fe	9*10 ⁷
NH ₃ , O ₂	Nitric acid	Pt/Rh	2.5* 10 ⁷
CO, H ₂	Methanol	Cu/ZnO	1.5*10 ⁷
C_2H_4, O_2	Ethylene oxide	Ag	1*10 ⁷
Unsaturated vegetable oils, H ₂	Hydrogenated vegetable oils	Ni	8*10 ⁶
C ₂ H ₄	Polyethylene	Cr(II), Ti(III)	6*10 ⁶
CH ₃ OH, O ₂	Formaldehyde	Mixed Fe, Mo oxides	5*10 ⁶
C ₃ H ₆ , NH ₃ , O ₂	Acrylonitrile	Mixed Bi, Mo oxides	3*10 ⁶
o -Xylene, O ₂	Phthalic anhydride	V ₂ O ₅	4*10 ⁶
n-Butane, O ₂	Maleic anhydride	V ₂ O ₅	4*10 ⁵

Catalytic cycle

Non catalytic x catalytic reaction

Reaction pathway

Steps in a catalytic reaction

- 1) Mass transfer of reactants to the external surface of catalyst
- 2) Mass transfer of reactants in porous structure of catalyst
- 3) Adsorption of reactants
- 4) Surface reaction (+ migration)
- 5) Desorption of products
- 6) Mass transfer of products in porous structure of catalyst
- 7) Mass transfer of reactants from the external surface of catalyst

The transport steps (1,2,6,7) depend on T, P, composition, flow rates, pore size,

The chemical steps (3,4,5) are dependent on T, P, composition.

Elementary steps of catalytic reaction

Reaction rate per mass

$$r_{M} = \frac{1}{m}r = \frac{1}{m}\frac{d\xi}{dt} = \frac{1}{m}\frac{1}{v_{i}}\frac{dn_{i}}{dt} \quad \text{mole.kg}^{-1}.s^{-1}$$
$$r_{M,k} = \frac{1}{m}r_{k} = \frac{1}{m}\frac{d\xi_{k}}{dt}$$

Reaction rate per surface

$$r_{S} = \frac{1}{S}r = \frac{1}{S}\frac{d\xi}{dt} = \frac{1}{S}\frac{1}{v_{i}}\frac{dn_{i}}{dt} \quad \text{mole.m}^{-2}.s^{-1}$$
$$r_{S,k} = \frac{1}{S}r_{k} = \frac{1}{S}\frac{d\xi_{k}}{dt}$$

Reaction rate per active center (turnover number)

$$r_{RS} = \frac{1}{n_{RS}} r = \frac{1}{n_{RS}} \frac{d\xi}{dt} = \frac{1}{n_{RS}} \frac{1}{v_i} \frac{dn_i}{dt} \qquad \text{s}^{-1}$$
$$r_{RS,k} = \frac{1}{n_{RS}} r_k = \frac{1}{n_{RS}} \frac{d\xi_k}{dt}$$

Reaction rate of catalytic reactions

Langmuir-Hishelwood ideal surface

⊙Rate of elementary steps

•Rate determining step x steady state hypothesis

Reaction rate of catalytic reactions

- Langmuir-Hishelwood ideal surface
- ⊙Rate of elementary steps

⊙Rate determining step x steady state hypothesis

CO oxidation on Pt

Overall reaction ($\Delta G_r^o < 0$)

Elementary steps of catalytic CO oxidation on Pt 1. CO chemisorption

$$\mathbf{CO}_{(g)} + [*] \leftrightarrow \mathbf{CO}^{*} \qquad r_1 = k_{f,1} P_{CO} \Theta_* - k_{b,1} \Theta_{CO}$$

2. O₂ dissociative chemisorption

* - Pt surface atoms = Catalytic active centre

$$\mathbf{O}_{2(g)} + 2[*] \leftrightarrow 2\mathbf{O}^{*}$$
 $r_{2} = k_{f,2}P_{O_{2}}\Theta_{*}^{2} - k_{b,2}\Theta_{O}^{2}$

3. Surface reaction between CO* and O*

$CO^* + O^* \leftrightarrow *CO_2 + *$	$r_3 = k_{f,3} \Theta_{CO} \Theta_O - k_{b,3} \Theta_{CO_2} \Theta_*$
-	$r_{3} - \kappa_{f,3} \circ_{CO} \circ_{O} \kappa_{b,3} \circ_{CO_{2}} \circ_{*}$

4. CO₂ desorption into gas phase

*CO₂ \leftrightarrow CO_{2(g)} + * $r_4 = k_{f,4} \Theta_{CO_2} - k_{b,4} P_{CO_2} \Theta_*$

 P_i – partial pressures of gaseous components [Pa] Θ_i - occupancy (coverage) of the i-th species [-] $k_{f,j}, k_{b,j}$ - reaction rate constants r_j – rate of the j-th elementary step [mol/kg katalyzátoru/s mol/molPt/s= 1/s]

Rate determining step in steady state

Relation between overall reaction rate and the rate of i-th elementary step determines the stoichiometric number σ_i (do not confuse with stoichiometric coefficient !)

$$r = \frac{r_i}{\sigma_i}$$

10

	$\sigma_{_i}$
$CO_{(g)} + [*] \leftrightarrow CO^*$	2
$O_{2(g)} + 2[*] \leftrightarrow 2O^*$	1
$CO^* + O^* \leftrightarrow *CO_2 + *$	2
$*CO_2 \leftrightarrow CO_{2(g)} + *$	2
$2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$	

M. Boudart, 1968, in "Kinetics of Chemical Processes":

The stoichiometric number of i-th elementary step, σ_i , is the number of times that this elementary step, as written, must be repeated, in the closed sequence, in order to obtain by summation of all steps the overall stoichiometric equation for reaction, as written.

Rate determining step: surface reaction

. . . .

$$\begin{split} K_{CO} = & \frac{k_{f,1}}{k_{b,1}} = \frac{\Theta_{CO}}{P_{CO}\Theta_*} \quad K_{O2} = \frac{k_{f,2}}{k_{b,2}} = \frac{\Theta_O^2}{P_{O_2}\Theta_*^2} \quad K_{CO_2} = \frac{k_{b,4}}{k_{f,4}} = \frac{\Theta_{CO_2}}{P_{CO_2}\Theta_*} \\ \Theta_* + \Theta_{CO} + \Theta_O + \Theta_{CO_2} = 1 \end{split}$$

$$\begin{split} \Theta_{*} &= \frac{1}{1 + K_{CO}P_{CO} + \sqrt{K_{O_2}P_{O_2}} + K_{CO_2}P_{CO_2}} \\ \Theta_{CO} &= \frac{K_{CO}P_{CO}}{1 + K_{CO}P_{CO} + \sqrt{K_{O_2}P_{O_2}} + K_{CO_2}P_{CO_2}} \\ \Theta_{O} &= \frac{\sqrt{K_{O_2}P_{O_2}}}{1 + K_{CO}P_{CO} + \sqrt{K_{O_2}P_{O_2}} + K_{CO_2}P_{CO_2}} \\ \Theta_{CO_2} &= \frac{K_{CO_2}P_{CO_2}}{1 + K_{CO}P_{CO} + \sqrt{K_{O_2}P_{O_2}} + K_{CO_2}P_{CO_2}} \end{split}$$

Reaction rate as a function of measurable variables

$$r_{3} = k_{f,3} \Theta_{CO} \Theta_{O} - k_{b,3} \Theta_{CO_{2}} \Theta_{*} = \frac{k_{f,3} K_{CO} \sqrt{K_{O_{2}}} P_{CO} \sqrt{P_{O_{2}}} - k_{b,3} K_{CO_{2}} P_{CO_{2}}}{\left[1 + K_{CO} P_{CO} + \sqrt{K_{O_{2}} P_{O_{2}}} + K_{CO_{2}} P_{CO_{2}}\right]^{2}}$$

Example

$$\begin{array}{ccc} C_2H_5OH_{(g)}\left(A_1\right) & \rightarrow & CH_3CHO_{(g)}\left(A_2\right) & + & H_{(g)} \\ & & (A_3) \end{array}$$

catalysts: CuO, CoO a Cr₂O₃

(Franckaerts J., Froment G.F., Kinetic study of the dehydrogenation of ethanol, Chem. Eng. Sci. 19 (1964) 807-818).

Kinetics

$$r_{M} = \frac{kK_{1}(P_{1} - P_{2}P_{3} / K_{eq})}{(1 + K_{1}P_{1} + K_{2}P_{2})^{2}}$$

 r_M (mol.g⁻¹.hod⁻¹), P_i (bar), k (mol.g⁻¹.hod⁻¹), K_{eq} (bar), K_i (bar⁻¹).

Task: to estimate on the basis of experimental data kinetic and adsorption parameters k, K_1, K_2

EXPERIMENTAL SET-UP

Franckaerts J., Froment G.F., Kinetic study of the dehydrogenation of ethanol, Chem. Eng. Sci. 19 (1964) 807-818

FIG. 1. Apparatus: 1,2, feed burettes; 3, metering pump; 4, thermocouples; 5, ice-bath; 6, mV-recorder; 7, reactor; 8, reactor-mantle; 9,10, variable transformers; 11,13, manometers; 12, pressure regulating device; 14, cooler; 15, cooling unit; 16, circulating pump; 17, sampling flask; 18, liquid air trap; 19, saturator, eventually also absorber in periods between sampling; 20, wet test meter; 21, flowmeters for air and nitrogen.

EXPERIMENTAL DATA

W/F_1^o	Р	y_1^o	y_4^o	y_2^o	Т	X_1
[g.hod/mol]	[bar]	[-]	[-]	[-]	[°C]	[-]
1,60	7,0	0,865	0,135	0,0	225,0	0,066
0,80	4,0	0,865	0,135	0,0	225,0	0,083
0,40	3,0	0,865	0,135	0,0	225,0	0,055
1,0	1,0	0,865	0,135	0,0	225,0	0,118
1,0	1,0	0,750	0,130	0,119	225,0	0,052
0,40	1,0	0,865	0,135	0,0	225,0	0,060
1,0	1,0	0,732	0,167	0,101	225,0	0,052
0,40	10,0	0,865	0,135	0,0	225,0	0,038
1,60	7,0	0,865	0,135	0,0	250,0	0,149
0,80	4,0	0,865	0,135	0,0	250,0	0,157
0,40	3,0	0,865	0,135	0,0	250,0	0,108
1,0	1,0	0,865	0,135	0,0	250,0	0,218
1,0	1,0	0,672	0,145	0,183	250,0	0,123
0,60	1,0	0,865	0,135	0,0	250,0	0,152
0,80	1,0	0,672	0,145	0,183	250,0	0,106
0,60	10,0	0,865	0,135	0,0	250,0	0,094
1,60	7,0	0,865	0,135	0,0	275,0	0,254
0,80	4,0	0,865	0,135	0,0	275,0	0,262
0,40	3,0	0,865	0,135	0,0	275,0	0,20
1,0	1,0	0,865	0,135	0,0	275,0	0,362
1,0	1,0	0,672	0,145	0,183	275,0	0,230
0,20	1,0	0,865	0,135	0,0	275,0	0,118
0,40	10,0	0,865	0,135	0,0	275,0	0,148
0,40	1,0	0,865	0,135	0,0	275,0	0,196

Solution: Minimize the objective function:

$$\Phi(k, K_1, K_2) = \sum_{i=1}^{NEXP} \left[X_{1,i}^{\exp} - X_{1,i}^{\mathrm{mod}}(k, K_1, K_2) \right]^2$$

 $X_{1,i}^{\text{mod}}(k, K_1, K_2)$ calculated from isothermal catalytic PFR model:

$$\frac{dX_1}{d(W/F_1^o)} = r_M(X_1) \qquad W/F_1^o = 0, X_1 = 0$$

ATHENA Visual Studio.

S Priklad_9_1.avw	/ - Athena Visual Studio	Visual/Vination Windown Halo			- # *
Priklad_9_1.av	w				
! Catalytic	c Ethanol Dehydrogenation	Kinetics		<u>^</u>	
Global k1, Global TEN	,KA1,KA2,KA3,KA4 As Real MF, Press, Ymol(3) <mark>As Real</mark>				
@Connect Va	ariables				
k1 =Par(1))	! Reaction rate constant			
KAl=Par(2) KA2=Par(3))	! Adsorption equilibrium constant for ethanoi ! Adsorption equilibrium constant for acetaldehvde			
KA3=Par(4))	! Adsorption equilibrium constant for hydrogen			
KA4=Par(5)) (6) 272 1500	! Adsorption equilibrium constant for water		=	
Press = Xu	(6) + 2/3.1500 u(2)	! Pressure [atm]		-	
Ymol(1) =	Xu (3)	! Feed ethanol mol. fraction			
Ymol(2) =	Xu (4)	! Feed water mol. fraction			
Imol(3) =	XU(5)	: reed acetaidenyde moi. fraction			
@Initial Co	onditions				
U(1)=0.0					
@Model Equa	ations				
Dim PA1, H	PA2, PA3, PA4, KEQ, X1, RR	R, AUX As Real			
KEQ = DEXE	P(-14159.9D0/TEMP+25.2681D	00)			
AUX = (1.0)	ODO+Ymol(1)*X1)/Press				
PA1 = Ymol	1(1)*(1.0D0-X1)/AUX	! Ethanol partial pressure			
PA2 = (Ymo PA3 = Ymol	ol(3)+Ymol(1)*X1)/AUX 1(1)*X1/AUX	! Acetaldehyde partial pressure ! Hydrogen partial pressure			
PA4 = Ymol	1 (2) / AUX	! Water partial pressure			
RR = k1*(H	PA1-PA2*PA3/KEQ)/(1.0D0+KA	1*PA1+KA2*PA2+KA3*PA3+KA4*PA4)^2			
F(1) = RR					
@Response 1	Model				
Y(1)=U(1)					
				•	
•				<u>نه</u> •	
Compiler Selected	d: Intel Visual Fortran	Dec-08-2009 10:55:19 INS Ln 1/36 Col 1	©Athena Visual Software, Inc.		

	225 oC	250 oC	275 oC
k1	5.767986E-01 +- 4.112E-01	8.863130E-01 +- 1.668E-01	1.675828E+00 +- 4.225E-01
KA1	4.839934E-01 +- 3.591E-01	4.876108E-01 +- 9.443E-02	3.803293E-01 +- 1.473E-01
KA2	1.011693E+01 +- 7.376E+00	3.044445E+00 +- 9.054E-01	2.812096E+00 +- 1.078E+00

Fixed-bed catalytic reactors

- In a fixed-bed reactor the catalyst pellets are held in place and do not move with respect to a fixed reference frame.
- Material and energy balances are required for both the fluid, which occupies the interstitial region between catalyst particles, and the catalyst particles, in which the reactions occur.
- The following figure presents several views of the fixed-bed reactor. The species production rates in the bulk fluid are *essentially zero*. That is the reason we are using a catalyst.

Expanded views of a fixed bed reactor

The steps to consider

During any catalytic reaction the following steps occur:

- 1. transport of reactants and energy from the bulk fluid up to the catalyst pellet exterior surface,
- 2. transport of reactants and energy from the external surface into the porous pellet,
- 3. adsorption, chemical reaction, and desorption of products at the catalytic sites,
- 4. transport of products from the catalyst interior to the external surface of the pellet, and
 - 5. transport of products into the bulk fluid.

The coupling of transport processes with chemical reaction can lead to concentration and temperature gradients within the pellet, between the surface and the bulk, or both.

Internal mass transfer in a porous catalytic particle

free diffusion

viscous flow

Knudsen diffusion

molecular sieving

Molecular diffusion

$$\vec{J}_{i}^{D} = -D_{i,m} \nabla c_{i} = -D_{i,m} \left(e_{x} \frac{\partial c_{i}}{\partial x} + e_{y} \frac{\partial c_{i}}{\partial y} + e_{z} \frac{\partial c_{i}}{\partial z} \right) \text{ Fick law}$$

Binary diffusion coefficient $D_{ij} = D_{ij} (T_{o}, P_{o}) \frac{P_{o}}{P} \left(\frac{T}{T_{o}} \right)^{n_{D}}$
Effective binary diffusion coefficient $D_{ij}^{e} = \frac{\varepsilon}{\tau} D_{ij}$

Knudsen diffusion

$$\vec{J}_{i}^{K} = -D_{i}^{K} \nabla c_{i} = -D_{i}^{K} \left(e_{x} \frac{\partial c_{i}}{\partial x} + e_{y} \frac{\partial c_{i}}{\partial y} + e_{z} \frac{\partial c_{i}}{\partial z} \right)$$

Knudsen diffusion coefficient $D_{i}^{K} = D_{i}^{K} (T_{o}) \sqrt{\frac{T}{T_{o}}}$

Effective Knudsen diffusion coefficient $D_i^{K,e} = \frac{\varepsilon}{\tau} D_i^e$

Viscous (convective) flow

Total flow

$$\vec{J}_i^V = -\frac{y_i B_o P}{\mu RT} \nabla P$$

$$\vec{J}_i = \vec{J}_i^D + \vec{J}_i^K + \vec{J}_i^V$$

First order gas phase reaction

$$A_{(g)} \rightarrow B_{(g)}$$

Reaction rate

 $r_S = k_S c_A \, [\text{mol.m}^{-2}.\text{s}^{-1}]$

Balance of component A in cylindrical pore

$$\overline{D}_{A} \frac{d^{2}c_{A}}{dx^{2}} = \frac{4}{d_{p}}k_{S}c_{A}$$
$$\frac{1}{\overline{D}_{A}} = \frac{1}{D_{A}^{K}} + \frac{1}{D_{AB}}$$

Boundary conditions

$$x = L \qquad c_A = c_A^s$$
$$x = 0 \qquad \frac{dc_A}{dx} = 0$$

Solution

$$c_A(x) = B_1 e^{\alpha x} + B_2 e^{-\alpha x}$$
$$\alpha = \sqrt{\frac{4k_s}{d_p \overline{D}_A}}$$

$$c_A^s = B_1 e^{\alpha L} + B_2 e^{-\alpha L}$$
$$0 = B_1 - B_2$$
$$B_1 = B_2 = \frac{c_A^s}{e^{\alpha L} + e^{-\alpha L}}$$

$$c_A(x) = \frac{c_A^s}{e^{\alpha L} + e^{-\alpha L}} \left[e^{\alpha x} + e^{-\alpha x} \right] = c_A^s \frac{e^{\alpha x} + e^{-\alpha x}}{e^{\alpha L} + e^{-\alpha L}} = c_A^s \frac{\cosh(\alpha x)}{\cosh(\alpha L)}$$

Mean reaction rate in the pore (rate of consumption of A)

$$R_{A} = \pi d_{p} \int_{0}^{L} k_{s} c_{A} dx = \frac{\pi d_{p} k_{s} c_{A}^{s}}{e^{\alpha L} + e^{-\alpha L}} \left[\frac{1}{\alpha} e^{\alpha x} - \frac{1}{\alpha} e^{-\alpha x} \right]_{0}^{L} = \frac{\pi d_{p} k_{s} c_{A}^{s}}{\alpha} \frac{e^{\alpha L} - e^{-\alpha L}}{e^{\alpha L} + e^{-\alpha L}} = \frac{\pi d_{p} k_{s} c_{A}^{s}}{\alpha} \tanh(\alpha L)$$
[mol A/s]

Effectiveness factor

Concentration profiles of A in the pore

Effectiveness factor as a function of αL

Real catalytic particle of the shape of slab of the thickness L_o

Dimensionless variables

$$Y = \frac{c_A}{c_A^s} \qquad z = \frac{x}{L}$$

$$\frac{d^2 Y}{dz^2} = \Phi^2 Y \qquad z = 0 \qquad \frac{dY}{dz} = 0 \qquad z = 1 \qquad Y = 1$$

$$\Phi = L \sqrt{\frac{S_g \rho k_s}{\overline{D}_A}} \qquad \text{Thiele number} \\ \text{(module)}$$
Solution
$$Y(z) = \frac{\cosh(\Phi z)}{\cosh(\Phi)}$$

$$\eta = \frac{2\rho S S_g k \int_0^L c_A dx}{2\rho S LS_g k c_A^0} = \frac{1}{2\rho S LS_g k$$

Real (measurable) reaction rate

$$\overline{R}_{A} = \eta 2\rho S LS_{g}kc_{A}^{o} = \frac{tgh(\Phi)}{\Phi} 2\rho S LS_{g}kc_{A}^{o} = \frac{tgh(\Phi)}{\Phi} m_{particle}S_{g}kc_{A}^{o}$$

 Φ

1.00E-2 1.00E-1 1.00E+0 1.00E+1 1.00E+2

Effectiveness factor as a function of Thiele number

1.00E-5 1.00E-4

1.00E-3

0.20

0.00 -

Cylinder

$$\overline{D}_{eA}\left[\frac{d^2c_A}{dx^2} + \frac{1}{x}\frac{dc_A}{dx}\right] = S_g \rho k_S c_A$$
$$x = 0 \qquad \frac{dc_A}{dx} = 0 \qquad x = r_o \quad c_A = c_A^s$$

Sphere

$$\overline{D}_{eA}\left[\frac{d^2c_A}{dx^2} + \frac{2}{x}\frac{dc_A}{dx}\right] = S_g \rho k_S c_A$$
$$x = 0 \qquad \frac{dc_A}{dx} = 0 \qquad x = r_o \quad c_A = c_A^s$$

Effectiveness factors for slab, cylinder and sphere

Shape	Effectiveness factor	Asymptote
Slab	$\eta = \frac{\tanh(\Phi)}{\Phi}, \Phi = \frac{L_o}{2}\sqrt{\frac{\rho_c k}{\overline{D}_1}}$	$\eta = \frac{1}{\Phi}, \Phi \ge 3$
Cylinder	$\eta = \frac{2}{\Phi} \frac{I_1(\Phi)}{I_o(\Phi)}$	$\eta = \frac{2}{\Phi}, \Phi \ge 6$
Sphere	$\eta = \frac{3}{\Phi} \left(\frac{1}{\tanh(\Phi)} - \frac{1}{\Phi} \right)$	$\eta = \frac{3}{\Phi}, \Phi \ge 9$

$$d = \frac{V_p}{A_p}, d = \frac{L}{2} (\text{slab}), d = \frac{r_0}{2} (\text{cylinder}), d = \frac{r_0}{3} (\text{sphere})$$
$$\Phi' = d \sqrt{\frac{\rho S_g k}{D_{eA}}} \quad \eta = \text{tgh}(\Phi')/\Phi'$$
$$\text{tgh}(\Phi' = \text{tanh}(\Phi'))$$

Exercise

The following first order gaseous catalytic reaction is conducted in a fixed bed reactor

 $N_2O_{(g)} \ \to \ N_{2(g)} \ + \ 1/2O_{2(g)}$

 $r_M = k(T)P_{N_2O} \text{ [mol/kg/s]}$

The intrinsic rate constant for Fe-ZrO₂ catalyst is

$$k(T) = k_o exp\left[-\frac{E}{RT_{ref}}\left(\frac{T_{ref}}{T} - 1\right)\right]$$

where $k_0 = 6.48 \times 10^{-6}$ mol/(kg.s.Pa), $T_{ref} = 773.15$ K, E = 171.3 kJ/mol.

The feed consists of 2000 ppm N₂O in inert gaseous mixture at 8 bars, 1173 K, at total molar flow rate 715 mol/s. The catalyst is a spherical-shaped pellet with a radius of 5 mm. The pellet density is 5800 kg/m³, the reactor bed porosity is 0.375. At 1173 K the effective diffusion coefficient of N₂O in porous pellet is $1.40 \times 10^{-7} \text{ m}^2/\text{s}$. Determine the mass of catalyst required to achieve 90 % conversion of N₂O if the reactor is operated isothermally at 1173 K and 8 bars.

Solution

Effectiveness factor calculation

$$\begin{split} \overline{D}_{A} \frac{d^{2}c_{A}}{dx^{2}} &= \rho_{cat}k(T)RTc_{A} \Rightarrow \frac{d^{2}Y_{A}}{dz^{2}} = \left(d^{2} \frac{\rho_{cat}k(T)RT}{\overline{D}_{A}}\right)Y_{A} = \Phi'^{2}Y_{A} \\ z &= 0, \frac{dY_{A}}{dz} = 0 \\ z &= 1, Y_{A} = 1 \\ \eta &= \frac{tgh(\Phi')}{\Phi'} \\ \Phi' &= \frac{0.005}{3} \sqrt{\frac{5800*0.060289*8.314*1173}{1.4*10^{-7}}} = 8225.67 \Rightarrow \eta = 1.2157*10^{-4} \end{split}$$

Mass of catalyst

$$F_A^o \frac{dX_A}{dW} = \eta k(T) P y_{g,A} = \eta k(T) P \frac{F_A}{F} = \eta k(T) P \frac{F_A^o (1 - X_A)}{F}$$
$$W = \frac{F}{\eta k(T) P} \int_0^{0.9} \frac{dX_A}{1 - X_A} = \frac{715}{1.2157 * 10^{-4} * 0.060289 * 8.0 * 10^5} \left(-\ln\left(0.1\right)\right) \cong 122 \text{ kg}$$

Internal and external mass transfer

Dimensionless parameter Bi_{mA} – Biot number for mass transfer

$$Bi_{mA} = \frac{k_{cA}l}{\overline{D}_A}$$

Solution of differential equation has the form:

Heat and mass transfer

Balance equations

$$\overline{D}_{i}\left(\frac{d^{2}c_{i}}{dx^{2}} + \frac{a}{x}\frac{dc_{i}}{dx}\right) = -v_{i}r_{v}(T, c_{k}) \qquad \begin{array}{c} 0 \quad \text{Slab} \\ a = 1 \quad \text{Cylinder} \\ 2 \quad \text{Sphere} \end{array}$$

$$\overline{\lambda}_{s}\left(\frac{d^{2}T}{dx^{2}} + \frac{a}{x}\frac{dT}{dx}\right) = (\Delta H_{r})r_{v}(T, c_{k}) \qquad \begin{array}{c} 2 \quad \text{Sphere} \end{array}$$
Boundary conditions
$$x = 0 \qquad x = r_{o} \qquad \\ \frac{dc_{i}}{dx} = 0 \qquad \frac{dT}{dx} = 0 \qquad -\overline{D}_{i}\frac{dc_{i}}{dx} = k_{ci}(c_{i}^{s} - c_{i}^{o}) \\ -\overline{\lambda}_{s}\frac{dT}{dx} = h(T_{s} - T_{o}) \end{array}$$

Maximal temperature gradient in particle of catalyst(Prater 1958)

Elimination of r_V from enthalpy balance:

$$\begin{split} \overline{\lambda}_{S} \frac{1}{x^{a}} \frac{d}{dx} \left(x^{a} \frac{dT}{dx} \right) &= (\Delta H_{r}) \overline{D}_{i} \frac{1}{x^{a}} \frac{d}{dx} \left(x^{a} \frac{dc_{i}}{dx} \right) \\ \int_{x=0}^{x} \frac{d}{dx} \left(x^{a} \frac{dT}{dx} \right) dx &= \frac{(\Delta H_{r}) \overline{D}_{i}}{\overline{\lambda}_{S}} \int_{x=0}^{x} \frac{d}{dx} \left(x^{a} \frac{dc_{i}}{dx} \right) dx \\ x^{a} \left(\frac{dT}{dx} \right) &= \frac{(\Delta H_{r}) \overline{D}_{i}}{\overline{\lambda}_{S}} x^{a} \left(\frac{dc_{i}}{dx} \right) \\ T(x) - T(0) &= \frac{(\Delta H_{r}) \overline{D}_{i}}{\overline{\lambda}_{S}} \left(c_{i}(x) - c_{i}(0) \right) \\ c_{i}(0) \to 0 \quad \text{or } c_{i}(0) \to c_{i}^{eq} \implies T(x) - T(0) \to \Delta T_{\max} \\ \Delta T_{\max} &= T(r_{o}) - T(0) = \frac{(\Delta H_{r}) \overline{D}_{i}}{\overline{\lambda}_{S}} c_{i}(r_{o}) = \frac{(\Delta H_{r}) \overline{D}_{i}}{\overline{\lambda}_{S}} c_{i}^{s} \\ - \frac{\Delta T_{\max}}{T_{o}} &= \frac{T(0) - T(r_{o})}{T_{o}} = \frac{(-\Delta H_{r}) \overline{D}_{i}}{\overline{\lambda}_{S} T_{o}} c_{i}^{s} = \overline{\beta} \end{split}$$

Prater C.D., The temperature produced by heat of reaction in the interior of porous particles, Chem. Eng. Sci. 8 (1958) 284.

The temperature produced by heat of reaction in the interior of porous particles

CHARLES D. PRATER

Socony Mobil Oil Company, Inc. Research and Development Laboratory Paulsboro, New Jersey, U.S.A.

(Received 9 September 1957)

Abstract—Heat of reaction will cause a temperature difference to occur between the inside and boundary of a porous particle during an internal reaction. An equation is derived relating this temperature difference to the reactant concentration difference, and it is shown to be independent of the kinetics of the reaction and of the particle geometry. Examples are given of the application of this equation to *cycloh*exane dehydrogenation and catalyst regeneration. **Résumé**—La chaleur de réaction produira une différence de température entre la surface limite et l'intérieur de particules poreuses, au cours de réactions au sein de cette particule. Une équation est obtenue établissant la relation entre cette différence de température et la différence de concentration des composés réagissant. Elle est indépendante de la cinétique de la réaction et de la forme géométrique des particules. Les exemples d'application de cette équation sont donnés pour la désydrogénation du *cy:loh*exane et la régénération de catalyseurs

Zusammenfassung—Die Reaktionswarme erzeugt eine Temperaturdifferenz zwischen dem Inneren und der Aussenseite eines porosen Teilchens wahrend einer inneren Reaktion. Es wird eine Gleichung abgeleitet, um diese Temperaturdifferenz auf die Konzentrationsdifferenz des Reaktanten zu beziehen und es wird gezeigt, dass sie unabhangig von der Reaktionskinetik und der Teilchengeometrie ist. Für die Anwendung dieser Gleichung werden als Beispiele die Dehydrierung von *Cyclo*hexan und die Regeneration eines Katalysators behandelt

INTRODUCTION

$$(T - T_s) = \frac{-\Delta H D_e}{K} (c_s - c) \tag{1}$$

MANY of the reactions which occur within porous catalytic solids have an appreciable heat of reaction. This heat of reaction will give rise to a temperature difference between the inside and boundary of the catalyst particle while the reaction is proceeding. An estimate of the size of this difference is needed in many catalytic investigations. A *complete* solution of the problem would give the temperature as a function of the spatial co-ordinates of the particle. To obtain this, a separate solution is required for each particle shape, boundary condition and kinetics. It is not possible to obtain such solutions in a closed form except for certain special cases and, in general, numerical methods must be used

It will be shown that a solution can be obtained which is valid for all kinetics and all particle geometries. This solution gives the temperature as a function of the concentration of reactant. Information has been sacrificed to obtain this generality, namely, the temperature as a function of co-ordinates. This solution is :-- where T is the centigrade temperature at all points within the particle which have a concentration of reactant c (mole/cm³)

- T_s is the temperature (°C) at the surface of the particle
- c_s is the concentration of the reactant at the surface of the particle (mole/cm³)
- ΔH is the heat of reaction (cal/mole) (negative values mean exothermic reactions)
- D_e is the effective diffusivity of the particle (cm²/sec)
- K is the thermal conductivity of the particle (cal/sec cm $^{\circ}$ C)

DAMKOHLER [1] and WHEELER [2] have investigated the thermal effects in *spherical* particles and have obtained the same equation for this special case. The derivation given below will show that the equation holds for particles of *any* shape.

The maximum possible temperature difference

The next reaction to be considered is the dehydrogenation of cyclohexane over a commercial platinum-alumina reforming catalyst. This is an endothermic reaction with a ΔH of $+52.54 \times 10^3$ cal/mole at 400°C. The conditions are 400°C reaction temperature, 4:1 hydrogen to hydrocarbon ratio and 25 atmospheres total pressure The values of the constants for this catalyst are —

 $D_e = 15.6 \times 10^{-3} \text{ cm/sec}^2$ (cyclohexane at 400°C) $K = 5.3 \times 10^{-4} \text{ cal/sec cm °C}.$

The value of the equilibrium concentration of cyclohexane is calculated from free energy data given by ROSSINI *et al.* [5]. The calculated maximum temperature drop possible is found to be 53° C which will be quite important in kinetic studies. Thus further study to determine the actual temperature distribution in the particles may be desirable.

In the above discussion, the problem of the measurement of the particle boundary temperature has not been considered explicitly. Conventionally, the temperature measuring device is located externally to the particle. The question then arises as to how well the temperature measured by the device represents the actual temperature of the particle boundary. A consideration of the particular conditions existing in a given experiment is needed to answer this question.

Effectiveness factor for non isothermal catalytic particle

SUMMARY

- 1. The kinetics of heterogeneous catalytic reaction can be described on the basis Langmuir model of ideal catalytic surface using sequence of both mass (and heat) transfer and elementary reaction steps.
- 2. The kinetic model has to be confronted with experimental data and the kinetic parameters (kinetic and adsorption constants) have to be estimated.
- 3. Mass and heat transfer have important impact on overall reaction rate and the models involving mass and heat transfer mechanisms should be formulated and solved.
- 4. Mass transfer in porous structure of catalytic pellet is complex phenomena and depends on pore size (distribution of pore size), interactions between fluid molecules and pore wall, transport parameters of fluid (diffusion coefficients, viscosity, heat conductivity) and solid phase, also on the hydrodynamics of surrounding fluid flow (external and internal mass transfer).

Models of catalytic reactors

Model equations involve:

• Balance equations for components of reaction mixture in both gas phase and porous catalytical particle

- Balance of energy (enthalpy)
- Balance of momentum
- Flux constitutive equations for component and energy fluxes

	Pseudo homogeneous	Heterogeneous
1-D	 withou axial dispersion (pure plug flow) with axial dispersion 	Gradients of concentration and temperature between phases
2-D	Radial dispersion	

1-D pseudo homogeneous model without axial dispersion

We make the following assumptions:

- 1. Particles of catalyst are small compared to the length of reactor
- 2. Plug flow in the bed, no radial profiles
- 3. Neglect axial dispersion in the bed
- 4. Neglect concentration and temperature gradients in solid catalyst
- 5. Neglect concentration and temperature gradients in external fluid film
- 6. Steady state

In the fluid phase, we track the molar flows of all species, the temperature and the pressure. Generally, we can no longer neglect the pressure drop in the tube because of the catalyst bed – Ergun equation.

$$\frac{\mathrm{d}F_i}{\mathrm{d}z} = S_R \rho_b \sum_{k=1}^{NR} v_{ki} r_{M,k}$$

$$Fc_p \frac{\mathrm{d}T}{\mathrm{d}z} = S_R \left[\rho_b \sum_{k=1}^{NR} \left(-\Delta_r H_k \right) r_{M,k} + \frac{4}{d_R} \omega \left(T_m - T \right) \right]$$

$$\frac{\mathrm{d}P}{\mathrm{d}z} = - \left[150 \frac{\mu_f}{d_p^2} \frac{\left(1 - \varepsilon_b \right)^2}{\varepsilon_b^3} v_f^o + 1.75 \frac{\rho_f}{d_p} \frac{\left(1 - \varepsilon_b \right)}{\varepsilon_b^3} \left(v_f^o \right)^2 \right]$$

$$z = 0, F_i = F_i^o, T = T_o, P = P_o$$

- μ_f fluid dynamic viscosity (Pa.s)
- ρ_{f} fluid density (kg/m³)
- v_f^o superficial fluid mean velocity (m/s)
- $\hat{\epsilon}_{b}$ bed porosity (-)
- d_p catalyst particle diameter (m)
- $\dot{\rho_b}$ bed apparent density (kg/m³)

 S_R – (empty) reactor cross section area (m²)

Numerical solution gives $F_i(z), T(z), P(z)$

Example

Consider the oxidation of CO and C_3H_6 in a catalytic converter containing spherical catalyst pellets with particle radius 0.175 cm (0.05 mass % Pt on Al_2O_3). The initial composition of gas mixture is 2 % mol CO, 3 % O_2 , 0.05 % $C_3H_6 + N_2$, total initial molar flow rate is between 0.1 – 2.0 mol/s. Converter has the diameter 10 cm and volume 4.3 litres. Bed porosity is 0.4 and catalyst bed density is 1100 kg/m³. The reactions of interest are₁

$$\begin{split} & \text{CO}_{(\text{g})} + \frac{1}{2} \text{O}_{2(\text{g})} \to \text{CO}_{2(\text{g})} \\ & \text{C}_{3}\text{H}_{6(\text{g})} + \frac{9}{2} \text{O}_{2(\text{g})} \to 3\text{CO}_{2(\text{g})} + 3\text{H}_{2}\text{O}_{(\text{g})} \\ & r_{M,1} = \frac{k_{1}(T)c_{o_{2}}c_{co}}{\left(1 + K_{co}c_{co} + K_{c_{3}\text{H}_{6}}c_{c_{3}\text{H}_{6}}\right)^{2}} \quad \text{mol/g/s} \\ & r_{M,2} = \frac{k_{2}(T)c_{o_{2}}c_{c_{3}\text{H}_{6}}}{\left(1 + K_{co}c_{co} + K_{c_{3}\text{H}_{6}}c_{c_{3}\text{H}_{6}}\right)^{2}} \quad \text{mol/g/s} \\ & k_{1}(T) = 7.07 \times 10^{19} \exp\left[-\frac{13106}{T}\right] \quad \text{cm}^{6}/(\text{molgs}) \\ & k_{2}(T) = 1.47 \times 10^{21} \exp\left[-\frac{15109}{T}\right] \quad \text{cm}^{6}/(\text{molgs}) \\ & K_{co} = 8.099 \times 10^{6} \exp\left[\frac{409}{T}\right] \quad \text{cm}^{3}/\text{mol} \end{split} \qquad \begin{array}{l} \text{Oh, S.H., Cavenish J.C.,} \\ & \text{Hegedus L.L., AICHE J. 26} \\ & (1980) 935. \end{array}$$

Data from http://webbook.nist.gov/chemistry/: $c_{p,i}(750 \text{ K})$: $c_{p,CO} = 31.5$ J/mol/K $\Delta H_{f,298.15} = -110.53$ kJ/mol $c_{p,O_2} = 33.4$ J/mol/K $c_{p,CO_2} = 50.0$ J/mol/K $\Delta H_{f,298.15} = -393.52$ kJ/mol $c_{p,N_2} = 31.1$ J/mol/K $c_{p,C_{3}H_{6}} = 123.9$ J/mol/K $\Delta H_{f,298.15} = 20.41$ kJ/mol $c_{p,H_2O} = 38.12$ J/mol/K $\Delta H_{f,298.15} = -241.83$ kJ/mol Viscosity of $N_{2(g)}$ at 750 K: $\mu_f = 3.44 \times 10^{-5}$ Pa.s Data supplement:

 $\omega = 230 \text{ W/(m}^2\text{K})$ $T_m = 325 \text{ K}$ $T_o = 500 \text{ K}$ $P_o = 202 \text{ kPa}$

Numerical integration done by SIRK42E

Discussion: internal x external mass and heat transfer

The counter-current catalytic reactor for ammonia synthesis is depicted on above presented figure. The cold gas mixture (21.75 mol. % N₂, 65.25 mol. % H₂, 5 mol. % NH₃, 4 mol. % CH₄ a 4 mol. % Ar) is introduced into the shell side (blue arrows) and is preheated by the heat transferred from catalytic tubes.

$$\dot{Q} = \omega \left(T_R - T_f\right) dS$$

Synthesis of ammonia is based on the high pressure gas phase catalytic reaction

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

Kinetics of ammonia synthesis on Fe catalyst (Apelbaum, Temkin, 1940)

$$r_{v} = k_{f} \frac{p_{N_{2}} p_{H_{2}}^{1.5}}{p_{NH_{3}}} - k_{b} \frac{p_{NH_{3}}}{p_{H_{2}}^{1.5}} \qquad [\text{kmol/m}^{3}/\text{hr}]$$

$$k_{f} = 9.88469 \times 10^{5} \exp\left(-\frac{87085}{R T}\right) \qquad [\text{kmol/m}^{3}/\text{hr/bar}^{1.5}]$$

$$k_{b} = 6.751949 \times 10^{15} \exp\left(-\frac{198454}{R T}\right) \qquad [\text{kmol} \times \text{bar}^{0.5}/\text{m}^{3}/\text{hr}]$$

$$R = 8.31446 \text{ J/mol/K}$$

- 1. Formulate the molar and enthalpy balances for 1-D plug flow pseudohomogeneous catalytic reactor model.
- Calculate the concentration and temperature profiles in the catalytic tubes and shell using 1-D plug flow pseudohomogeneous catalytic reactor model. Constant pressure (no pressure drop) is assumed.

Data

Feed temperature	15°C	
Feed flow rate	26400 kg/hr	
Pressure	190 bar	
Length of reactor tubes	<i>L</i> =8.5 m	
Tube internal diameter	$d_t = 0.078 \text{ m}$	
Number of tubes	N _t =41	
Global heat transfer coeffic	$\omega = 2093 \text{ kJ/m}^2/\text{hr/K} = 2096 \times$	$\times 10^3$ / 3600 W/m ² /K
Temperature of reaction mi	xture in catalyst inside of tube	$T_R[K]$
Temperature of reaction mi	ixture in the shell	$T_F[K]$
Component partial pressure		p _i [bar]

The enthalpy of reaction and the heat capacities of components will be taken from open resources [1,2]

1. <u>http://webbook.nist.gov/chemistry/</u>

2. B. E. Poling, J.M.Prausnitz, J.P.O'Connell, The Properties of Gases and Liquids, Fifth Edition, McGraw-Hill, N.Y. 2001.

Solution of boundary value problem by shooting method

$$\begin{aligned} \frac{dF_i}{dz} &= N_t S_t v_i r_v \\ \frac{dT_R}{dz} &= \frac{N_t S_t}{\sum_{i=1}^{NC} F_i c_{pi} (T_R)} \bigg[\left(-\Delta_r H \right) r_v + \frac{4\omega}{d_t} \left(T_F - T_R \right) \bigg] \\ \frac{dT_F}{dz} &= \frac{N_t \pi d_t \omega}{\sum_{i=1}^{NC} F_i^o c_{pi} (T_F)} \left(T_F - T_R \right) \\ z &= 0, F_i = F_i^o, T_R = T_F \\ z &= L, T_F = T_F^o \end{aligned}$$

z, m

2-D pseudo homogeneous model with axial and radial dispersion

$$\begin{split} N_{i} &= -D_{ai} \frac{\partial c_{i}}{\partial z} - D_{ri} \frac{\partial c_{i}}{\partial r} + y_{i} \sum_{j=1}^{NS} N_{j} = -D_{ai} \frac{\partial c_{i}}{\partial z} - D_{ri} \frac{\partial c_{i}}{\partial z} + c_{i} . \mathbf{v} \\ N_{H} &= -\lambda_{am} \frac{\partial T}{\partial z} - \lambda_{rm} \frac{\partial T}{\partial r} + \mathbf{v} \rho_{g} c_{pm} T \end{split}$$

. . .

Balance element of volume

Balance equations

$$\begin{split} D_{ri} & \left(\frac{\partial^2 c_i}{\partial r^2} + \frac{1}{r} \frac{\partial c_i}{\partial r} \right) + D_{ai} \frac{\partial^2 c_i}{\partial z^2} - \mathbf{v}_s \frac{\partial c_i}{\partial z} + v_i r_F = 0 \\ \lambda_{rm} & \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} \right) + \lambda_{am} \frac{\partial^2 T}{\partial z^2} - \mathbf{v}_s \rho_g c_{pm} \frac{\partial T}{\partial z} + (-\Delta H_r) r_F = 0 \end{split}$$

Boundary and initial conditions

$$\begin{split} z &= 0, \qquad 0 < r < r_o \\ &- D_{ai} \frac{\partial c_i}{\partial z} + v c_i = v c_i^o \\ &- \lambda_{am} \frac{\partial T}{\partial z} + v \rho_g c_{pm} T = v \rho_g c_{pm} T_o \end{split}$$

$$\begin{aligned} r &= r_o' \\ \frac{\partial c_i}{\partial r} &= 0 & -\lambda_{\rm mn} \frac{\partial T}{\partial r} = h_w (T - T_m) \\ r &= 0 \\ \frac{\partial c_i}{\partial r} &= 0 & \frac{\partial T}{\partial r} = 0 \end{aligned}$$