1 Differential equations

Differential equation is an equation which relates a function $y(x)$ with its derivatives $y^{\prime}(x), y^{\prime \prime}(x), y^{\prime \prime \prime}(x), \ldots$ and the independent variable x, e.g.

$$
\begin{equation*}
F\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right)=0 \tag{1}
\end{equation*}
$$

where F is a function in $n+2$ indeterminates.
Definition 1 By a solution to a differential equation (1) we refer to a function $y(x)$ defined on an interval I which satisfies (1) for all $x \in I$.
The general solution to (1) is a collection of all solutions to (1). One specific solution to (1) is called a particular solution. The graph of a particular solution is called the integral curve.

When searching for a particular solution to a differential equation we usually deal with two problems:

1. Initial value problem:

$$
\begin{aligned}
& F\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right)=0 \\
& y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}
\end{aligned}
$$

- find a particular solution $y_{P}(x), x \in I$ to the differential equation $F\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right)=0$ such that it satisfies the initial conditions $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$, i.e. such that

$$
y_{P}\left(x_{0}\right)=y_{0}, y_{P}^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y_{P}^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

Note that $x_{0} \in I$.
2. Boundary value problem

$$
\begin{aligned}
& F\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right)=0 \\
& y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}
\end{aligned}
$$

- find a particular solution $y_{P}(x), x \in I$ to the differential equation $F\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right)=0$ such that it satisfies the boundary conditions $y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}$, i.e. such that

$$
y_{P}\left(x_{0}\right)=y_{0}, y_{P}\left(x_{1}\right)=y_{1} .
$$

Note that $\left[x_{0}, x_{1}\right] \subseteq I\left(\right.$ for $\left.x_{0}<x_{1}\right)$.
Definition 2 Order of a differential equation $F\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right)=0$ is n - the highest order of the derivative of $y(x)$ appearing in the equation.

Definition 3 A linear differential equation of order n is a differential equation of order n which can be written in the form

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n-1}(x) y^{\prime}+a_{n}(x) y=b(x)
$$

where $b(x), a_{i}(x), i=0, \ldots, n$ are continuous functions on an interval I and $a_{0}(x) \neq 0$ for all $x \in I$.
Differential equations which are not linear are called nonlinear.

1.1 Separable differential equations

A first order differential equation $F\left(x, y(x), y^{\prime}(x)\right)=0$ is called separable if there exist functions f and g such that

$$
\begin{equation*}
y^{\prime}(x)=f(x) g(y) \tag{2}
\end{equation*}
$$

Theorem 1 (Existence and uniqueness of solutions)

Consider a differential equation (2). If $f(x)$ is a continuous function on an open interval (a, b) and $g(y)$ is a continuously differentiable function on an open interval (c, d), then for every point of the rectangle $O=$ $(a, b) \times(c, d)$ there is exactly one integral curve passing through it. In other words, there exists a unique solution to (2) satisfying an initial condition $y\left(x_{0}\right)=y_{0}$, where $\left(x_{0}, y_{0}\right) \in O$.

Note that the line with the direction $f\left(x_{0}\right) g\left(y_{0}\right)$ passing through a point $\left(x_{0}, y_{0}\right)$ is the tangent line to the integral curve corresponding to the particular solution of the initial value problem $y^{\prime}=f(x) g(y), y\left(x_{0}\right)=y_{0}$.
If a short line segment of direction $f(x) g(y)$ is drawn at each point (x, y) of the rectangle O (i.e. it is a line segment of the tangent line to the integral curve, all passing through the point (x, y)), one obtains so-called slope or direction field for the equation $y^{\prime}=f(x) g(y)$.

Theorem 2 (Separation of variables) Let f be a continuous function on an interval (a, b) and let g be a continuously differentiable function on an interval (c, d). Then the following holds.
(i) If $g\left(y_{0}\right)=0$ for some $y_{0} \in(c, d)$, then the constant function

$$
y(x) \equiv y_{0}, x \in(a, b)
$$

is a solution to $y^{\prime}=f(x) g(y)$.
(ii) If $g(y) \neq 0$ for all $y \in(c, d)$, then the general solution to $y^{\prime}=f(x) g(y)$ on the rectangle $(a, b) \times(c, d)$ is of the form

$$
y(x)=G^{-1}(F(x)+C)
$$

where $F(x)=\int f(x) \mathrm{d} x$ and $G(y)=\int \frac{1}{g(y)} \mathrm{d} y$.
The proof of the theorem provides us with the algorithm for solving separable differential equations.
Algorithm 1 Consider the differential equation (2) such that $f(x)$ is continuous on (a, b) and $g^{\prime}(y)$ is continuous on (c, d).

1. Determine all points y_{0} such that $g\left(y_{0}\right)=0$.

Then $y(x)=y_{0}, x \in(a, b)$ is a constant solution to (2).
2. Note that $y^{\prime}(x)=\frac{\mathrm{d} y}{\mathrm{~d} x}$ and thus $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) g(y), x \in(a, b), y \in J \subseteq(c, d)$, where J is an interval which does not contain y_{0}.
3. Separate the variables:

$$
\frac{\mathrm{d} y}{g(y)}=f(x) \mathrm{d} x
$$

4. Integrate both sides, the left side w.r.t. y and the right w.r.t. x,

$$
\int \frac{\mathrm{d} y}{g(y)}=\int f(x) \mathrm{d} x
$$

5. Let $G(y)$ be an antiderivative of $\frac{1}{g(y)}$ and let $F(x)$ be an antiderivative of $f(x)$. Then

$$
y(x)=G^{-1}(F(x)+C), C \in \mathbb{R}, x \in(a, b)
$$

is the general solution (together with the constant solution $y(x)=y_{0}, x \in(a, b)$) to (2).

1.2 Linear differential equations of order 1

Definition 4 Let $a_{0}(x), a_{1}(x), b_{1}(x), a(x), b(x)$ be continuous functions on an open interval I. If $\forall x \in I: a_{0}(x) \neq$ 0 , then the equation

$$
a_{0}(x) y^{\prime}+a_{1}(x) y=b_{1}(x) \text { or equivalently } y^{\prime}+a(x) y=b(x)
$$

is a first order linear differential equation.
Further, if $\forall x \in I: b(x)=0$, the equation $y^{\prime}+a(x) y=0$ is said to be homogeneous first order linear differential equation (HLDE). Otherwise, if $\exists x \in I: b(x) \neq 0$, then the equation $y^{\prime}+a(x) y=b(x)$ is called nonhomogeneous first order linear differential equation (NLDE).

Theorem 3 (general solution to HLDE of order 1)

A collection of all solutions to a first order HLDE

$$
\begin{equation*}
y^{\prime}+a(x) y=0 \tag{3}
\end{equation*}
$$

is of the form

$$
y_{H}(x)=C \mathrm{e}^{-A(x)}, C \in \mathbb{R}, \text { where } A(x)=\int a(x) \mathrm{d} x
$$

Theorem 4 (general solution to NLDE of order 1)

The general solution to a first order NLDE

$$
\begin{equation*}
y^{\prime}+a(x) y=b(x) \tag{4}
\end{equation*}
$$

is of the form

$$
y=y_{P}+y_{H},
$$

where y_{P} is a particular solution to (4) and y_{H} is the general solution to the corresponding HLDE, i.e. to (3).

Theorem 5 (variation of constant)

Let $y_{H}(x)=C \varphi(x)$ be the general solution to (3). If a function $c(x)$ satisfies the equation

$$
c^{\prime}(x) \varphi(x)=b(x)
$$

then the function

$$
y_{p}(x)=c(x) \varphi(x)
$$

is a particular solution to (4).
Note that the theorem above can be formulated as:
Consider a NLDE $a_{0}(x) y^{\prime}+a_{1}(x) y=b_{1}(x)$ such that $a_{0}(x) \neq 0$ for all x in an interval I. Let $y_{H}(x)=C \varphi(x)$ be the general solution to the corresponding HLDE $a_{0}(x) y^{\prime}+a_{1}(x) y=0$. If a function $c(x)$ satisfies the equation

$$
c^{\prime}(x) \varphi(x)=\frac{b_{1}(x)}{a_{0}(x)}
$$

then $y_{P}(x)=c(x) \varphi(x)$ is a particular solution to $a_{0}(x) y^{\prime}+a_{1}(x) y=b_{1}(x)$.
Algorithm 2 Consider (4) on an interval I, i.e. $x \in I$.

1. Find the general solution to (3):

$$
y_{H}(x)=C \mathrm{e}^{-A(x)}, C \in \mathbb{R}, A(x)=\int a(x) \mathrm{d} x .
$$

Denote $\varphi(x)=\mathrm{e}^{-A(x)}$, i.e. $y_{H}(x)=C \varphi(x)$.
2. Find a particular solution to (4) (by the variation of the parameter):

Assume $y_{P}(x)=c(x) \varphi(x)$, where $c(x)$ is a function defined on I.
(i) Substitute for y_{P} in (4):

$$
\begin{aligned}
c^{\prime}(x) \varphi(x)+c(x) \varphi^{\prime}(x)+a(x) c(x) \varphi(x) & =b(x) \\
c^{\prime}(x) \varphi(x) & =b(x)
\end{aligned}
$$

(ii) $c(x)=\int \frac{b(x)}{\varphi(x)} \mathrm{d} x$
3. The general solution to (4) is: $y(x)=y_{P}(x)+y_{H}(x), x \in I$

1.3 Euler method

The Euler method is a numerical procedure for solving ordinary differential equations with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations.

Consider the initial value problem

$$
\begin{aligned}
y^{\prime} & =f(x, y), \quad x \in[a, b], \\
y(a) & =y_{0} .
\end{aligned}
$$

The steps of the Euler method to approximate the particular solution to the initial value problem above are as follows:

1. Divide the interval $[a, b]$ into n subintervals with a chosen division step h, i.e. $n=\frac{b-a}{n}$ and the division

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b \text { is equidistant with } x_{i}=x_{i-1}+h, i=1, \ldots, n .
$$

2. Compute the approximations y_{i} of the values $y\left(x_{i}\right)$ of the particular solution $y(x)$ to the initial value problem at the division points $x_{i}, i=0, \ldots, n$ as

$$
y_{i+1}=y_{i}+h f\left(x_{i}, y_{i}\right), \quad i=0, \ldots, n-1 .
$$

3. The piecewise-linear function the graph of which is joining the points $\left(x_{i}, y_{i}\right), i=0, \ldots, n$ is the approximation of the particular solution to the initial value problem by the Euler method with the step h.

Because the global error $E(h)=y_{n}-y(b)$ is proportional to h, we say the Euler method is a numerical method of the first order.

