
1 Differential equations

Differential equation is an equation which relates a function y(x) with its derivatives y′(x),y′′(x),y′′′(x), . . . and
the independent variable x, e.g.

F(x,y(x),y′(x), . . . ,y(n)(x)) = 0 (1)

where F is a function in n+2 indeterminates.

Definition 1 By a solution to a differential equation (1) we refer to a function y(x) defined on an interval I
which satisfies (1) for all x ∈ I.
The general solution to (1) is a collection of all solutions to (1). One specific solution to (1) is called a particular
solution. The graph of a particular solution is called the integral curve.

When searching for a particular solution to a differential equation we usually deal with two problems:

1. Initial value problem:

F(x,y(x),y′(x), . . . ,y(n)(x)) = 0
y(x0) = y0,y′(x0) = y1, . . . ,y(n−1)(x0) = yn−1

- find a particular solution yP(x), x ∈ I to the differential equation F(x,y(x),y′(x), . . . ,y(n)(x)) = 0 such
that it satisfies the initial conditions y(x0) = y0,y′(x0) = y1, . . . ,y(n−1)(x0) = yn−1, i.e. such that

yP(x0) = y0,y′P(x0) = y1, . . . ,y
(n−1)
P (x0) = yn−1.

Note that x0 ∈ I.

2. Boundary value problem

F(x,y(x),y′(x), . . . ,y(n)(x)) = 0
y(x0) = y0,y(x1) = y1

- find a particular solution yP(x), x ∈ I to the differential equation F(x,y(x),y′(x), . . . ,y(n)(x)) = 0 such
that it satisfies the boundary conditions y(x0) = y0,y(x1) = y1, i.e. such that

yP(x0) = y0,yP(x1) = y1.

Note that [x0,x1]⊆ I (for x0 < x1).

Definition 2 Order of a differential equation F(x,y(x),y′(x), . . . ,y(n)(x)) = 0 is n - the highest order of the
derivative of y(x) appearing in the equation.

Definition 3 A linear differential equation of order n is a differential equation of order n which can be written
in the form

a0(x)y(n)+a1(x)y(n−1)+ · · ·+an−1(x)y′+an(x)y = b(x),

where b(x),ai(x), i = 0, . . . ,n are continuous functions on an interval I and a0(x) 6= 0 for all x ∈ I.
Differential equations which are not linear are called nonlinear.

1.1 Separable differential equations

A first order differential equation F(x,y(x),y′(x)) = 0 is called separable if there exist functions f and g such
that

y′(x) = f (x)g(y). (2)

Theorem 1 (Existence and uniqueness of solutions)
Consider a differential equation (2). If f (x) is a continuous function on an open interval (a,b) and g(y) is
a continuously differentiable function on an open interval (c,d), then for every point of the rectangle O =
(a,b)× (c,d) there is exactly one integral curve passing through it. In other words, there exists a unique
solution to (2) satisfying an initial condition y(x0) = y0, where (x0,y0) ∈ O.
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Note that the line with the direction f (x0)g(y0) passing through a point (x0,y0) is the tangent line to the integral
curve corresponding to the particular solution of the initial value problem y′ = f (x)g(y), y(x0) = y0.
If a short line segment of direction f (x)g(y) is drawn at each point (x,y) of the rectangle O (i.e. it is a line
segment of the tangent line to the integral curve, all passing through the point (x,y)), one obtains so-called slope
or direction field for the equation y′ = f (x)g(y).

Theorem 2 (Separation of variables) Let f be a continuous function on an interval (a,b) and let g be a con-
tinuously differentiable function on an interval (c,d). Then the following holds.

(i) If g(y0) = 0 for some y0 ∈ (c,d), then the constant function

y(x)≡ y0, x ∈ (a,b)

is a solution to y′ = f (x)g(y).

(ii) If g(y) 6= 0 for all y ∈ (c,d), then the general solution to y′ = f (x)g(y) on the rectangle (a,b)× (c,d) is
of the form

y(x) = G−1(F(x)+C),

where F(x) =
∫

f (x)dx and G(y) =
∫ 1

g(y)
dy.

The proof of the theorem provides us with the algorithm for solving separable differential equations.

Algorithm 1 Consider the differential equation (2) such that f (x) is continuous on (a,b) and g′(y) is continu-
ous on (c,d).

1. Determine all points y0 such that g(y0) = 0.
Then y(x) = y0, x ∈ (a,b) is a constant solution to (2).

2. Note that y′(x) =
dy
dx

and thus
dy
dx

= f (x)g(y), x ∈ (a,b), y ∈ J ⊆ (c,d), where J is an interval which does
not contain y0.

3. Separate the variables:
dy

g(y)
= f (x)dx

4. Integrate both sides, the left side w.r.t. y and the right w.r.t. x,∫ dy
g(y)

=
∫

f (x)dx

5. Let G(y) be an antiderivative of
1

g(y)
and let F(x) be an antiderivative of f (x). Then

y(x) = G−1(F(x)+C), C ∈ R, x ∈ (a,b)

is the general solution (together with the constant solution y(x) = y0,x ∈ (a,b)) to (2).

1.2 Linear differential equations of order 1

Definition 4 Let a0(x), a1(x), b1(x), a(x), b(x) be continuous functions on an open interval I. If ∀x∈ I : a0(x) 6=
0, then the equation

a0(x)y′+a1(x)y = b1(x) or equivalently y′+a(x)y = b(x)

is a first order linear differential equation.
Further, if ∀x ∈ I : b(x) = 0, the equation y′ + a(x)y = 0 is said to be homogeneous first order linear

differential equation (HLDE). Otherwise, if ∃x ∈ I : b(x) 6= 0, then the equation y′+ a(x)y = b(x) is called
nonhomogeneous first order linear differential equation (NLDE).
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Theorem 3 (general solution to HLDE of order 1)
A collection of all solutions to a first order HLDE

y′+a(x)y = 0 (3)

is of the form

yH(x) =Ce−A(x), C ∈ R, where A(x) =
∫

a(x)dx.

Theorem 4 (general solution to NLDE of order 1)
The general solution to a first order NLDE

y′+a(x)y = b(x) (4)

is of the form
y = yP + yH ,

where yP is a particular solution to (4) and yH is the general solution to the corresponding HLDE, i.e. to (3).

Theorem 5 (variation of constant)
Let yH(x) =Cϕ(x) be the general solution to (3). If a function c(x) satisfies the equation

c′(x)ϕ(x) = b(x),

then the function
yp(x) = c(x)ϕ(x)

is a particular solution to (4).

Note that the theorem above can be formulated as:
Consider a NLDE a0(x)y′+a1(x)y = b1(x) such that a0(x) 6= 0 for all x in an interval I. Let yH(x) =Cϕ(x) be
the general solution to the corresponding HLDE a0(x)y′+a1(x)y = 0. If a function c(x) satisfies the equation

c′(x)ϕ(x) =
b1(x)
a0(x)

,

then yP(x) = c(x)ϕ(x) is a particular solution to a0(x)y′+a1(x)y = b1(x).

Algorithm 2 Consider (4) on an interval I, i.e. x ∈ I.

1. Find the general solution to (3):

yH(x) =Ce−A(x), C ∈ R, A(x) =
∫

a(x)dx.

Denote ϕ(x) = e−A(x), i.e. yH(x) =C ϕ(x).

2. Find a particular solution to (4) (by the variation of the parameter):
Assume yP(x) = c(x)ϕ(x), where c(x) is a function defined on I.

(i) Substitute for yP in (4):
c′(x)ϕ(x)+ c(x)ϕ′(x)+a(x)c(x)ϕ(x) = b(x)

c′(x)ϕ(x) = b(x)

(ii) c(x) =
∫ b(x)

ϕ(x)
dx

3. The general solution to (4) is: y(x) = yP(x)+ yH(x), x ∈ I
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1.3 Euler method

The Euler method is a numerical procedure for solving ordinary differential equations with a given initial value.
It is the most basic explicit method for numerical integration of ordinary differential equations.

Consider the initial value problem
y′ = f (x,y), x ∈ [a,b],

y(a) = y0.

The steps of the Euler method to approximate the particular solution to the initial value problem above are as
follows:

1. Divide the interval [a,b] into n subintervals with a chosen division step h, i.e. n = b−a
n and the division

a = x0 < x1 < · · ·< xn = b is equidistant with xi = xi−1 +h, i = 1, . . . ,n.

2. Compute the approximations yi of the values y(xi) of the particular solution y(x) to the initial value
problem at the division points xi, i = 0, . . . ,n as

yi+1 = yi +h f (xi,yi), i = 0, . . . ,n−1.

3. The piecewise-linear function the graph of which is joining the points (xi,yi), i = 0, . . . ,n is the approxi-
mation of the particular solution to the initial value problem by the Euler method with the step h.

Because the global error E(h) = yn− y(b) is proportional to h, we say the Euler method is a numerical method
of the first order.
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