
1 Indefinite integrals

Definition 1 Let f be a function defined on an interval I. Function F defined on I such that

∀x ∈ I : F ′(x) = f (x)

is called an antiderivative (other used names: primitive, primitive function) of f on I.

Because constant functions c(x) = c ∈ R have zero derivatives, for every antiderivative F of f on I it holds
that

f = F ′ = F ′+0 = F ′+ c′ = (F + c)′.

Hence F + c, where c ∈ R are antiderivatives of f on I. So, antiderivatives are unique only up to a constant.

Definition 2 Let f be a function defined on an interval I. A set of all antiderivatives of f on I is called indefinite
integral of f on I and we denote it∫

f (x)dx = {F(x)+ c |c ∈ R, F is an antiderivative of f on I}.

Theorem 1 (Existence of antiderivatives)
Let f be a continuous function on I. Then f has an antiderivative on I.

According to the theorem above every continuous function has an antiderivative. However, it might not al-
ways be possible to find its explicit formula. Examples of such functions are the error function

∫
e−x2

dx, Fresnel
function

∫
sin(x2)dx, trigonometric integral function

∫ sinx
x dx and logarithmic integral function

∫ 1
ln(x) dx.

Antiderivatives of basic functions∫
xn dx = xn+1

n+1 , n ∈ R, n 6=−1
∫

ax dx = ax

lna , a > 0, a 6= 1
∫ 1

x dx = ln |x|∫
sin(x)dx =−cos(x)

∫ 1
cos2(x) dx = tan(x)

∫ 1
1+x2 dx = arctan(x)∫

cos(x)dx = sin(x)
∫ 1

sin2(x)
dx =−cot(x)

∫ 1√
1−x2 dx = arcsin(x)∫ f ′(x)

f (x) dx = ln(| f (x)|)
∫ 1√

x2+a
dx = ln(|x+

√
x2 +a|), a 6= 0

Theorem 2 (Properties of antiderivatives)
The following holds:

(i)
∫

k f (x)dx = k
∫

f (x)dx, where k ∈ R is a constant

(ii)
∫
( f (x)±g(x))dx =

∫
f (x)dx±

∫
g(x)dx

Methods for computing antiderivatives:

• Integration by parts (per-partes)

• Integration by change of variable (substitution method)

• Integration of rational functions (partial fraction decomposition)

1.1 Per-partes method

Theorem 3 Suppose functions u and v have continuous derivatives on an interval I. Then∫
u(x)v′(x)dx = u(x)v(x)−

∫
u′(x)v(x)dx on I.
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1.2 Substitution method

Theorem 4 Let f (t) be a function continuous on an interval (a,b). Let ϕ(x) be a continuously differentiable
function on an interval (α,β) such that it maps the interval (α,β) onto the interval (a,b).

(i) Then ∫
f (ϕ(x))ϕ′(x)dx =

∫
f (t)dt = F(t) = F(ϕ(x)),

where F is an antiderivative of f on (a,b).

(ii) Further suppose ∀x ∈ (α,β) : ϕ′(x) 6= 0. Then∫
f (t)dt =

∫
f (ϕ(x))ϕ′(x)dx = F(x) = F(ϕ−1(t)),

where F is an antiderivative of f (ϕ(x))ϕ′(x) on (α,β).

In both cases t = ϕ(x) is the used substitution.

1.3 Integration by partial fractions

1.3.1 Polynomial factorization

Let us recall that Pn(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 is a polynomial of degree n ∈ N with coefficients
a0,a1, . . . ,an ∈ R, an 6= 0. Specifically, P0(x) = a0 is a polynomial of degree zero. A number α ∈ C such that
Pn(α) = 0 is called a root of the polynomial Pn(x).

Proposition 1 Let α ∈ C be a root of a polynomial Pn(x) of degree n ∈ N. Then

Pn(x) = (x−α)Q(x) ,

where Q(x) is a polynomial of degree (n−1).

Definition 3 We say that a root α ∈C of a polynomial P(x) is of multiplicity k ∈N if there exists a polynomial
Q(x) such that

P(x) = (x−α)kQ(x) and Q(α) 6= 0.

In case k = 1, we refer to α as a simple root of P(x). If k ≥ 2, α is referred to as a multiple or repeated root of
P(x).

Proposition 2 α ∈ C is a root of multiplicity k ∈ N of a polynomial P(x) if and only if

P(α) = 0, P′(α) = 0, . . . ,P(k−1)(α) = 0 and P(k)(α) 6= 0.

Theorem 5 Every non-zero polynomial of degree n has, counted with multiplicity, exactly n roots.

A non-constant polynomial is called irreducible if it cannot be factored into the product of two non-constant
polynomials. In case of univariate polynomials (i.e. polynomials of one variable) with real coefficients, irre-
ducible polynomials are either linear, i.e. of the form a1x+ a0 or quadratic with complex conjugate roots, i.e.
of the form a2x2 +a1x+a0 with D = a2

1−4a2a0 < 0.
Then by a polynomial factorization we mean the process of expressing a polynomial as the product of

irreducible factors. This decomposition is unique up to the order of the factors and the multiplication of the
factors by non-zero constants whose product is 1.
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1.3.2 Rational functions

Definition 4 A function f (x) =
P(x)
Q(x)

, where P(x) and Q(x) are polynomials, is called a rational function.

If the degree of P(x) is smaller than the degree of Q(x), the rational function f is said to be proper. It is said to
be improper otherwise.

Proposition 3 Every rational function can be written as a sum of a polynomial and a proper rational function.

By a partial fraction decomposition we mean the operation that consists in expressing a rational function as
a sum of a polynomial (possibly zero) and one or several fractions with simpler denominators.

Consider a rational function f (x) =
P(x)
Q(x)

. By long division of P(x) and Q(x) and by polynomial factoriza-

tion of Q(x) one derives

f (x) = p1(x)+
p2(x)
Q(x)

= p1(x)+
p2(x)

C(x−a1) j1 · · ·(x−am) jm(x2 +b1x+ c1)k1 · · ·(x2 +bnx+ cn)kn
,

where

(i) p1(x), p2(x) are polynomials such that the degree of p2(x) is strictly smaller than the degree of Q(x),

(ii) C,a1, . . . ,am,b1, . . . ,bn,c1, . . . ,cn ∈ R with b2
i −4ci < 0,

(iii) the terms (x− ai) are linear factors of Q(x) which correspond to the real roots of Q(x), and the terms
(x2+bix+ci) are irreducible quadratic factors of Q(x) which correspond to the pairs of complex conjugate
roots of Q(x),

(iv) j1, . . . , jm,k1, . . . ,kn ∈ N correspond to the multiplicities of the respective roots of Q(x).

Then the partial fraction decomposition of f (x) is the following:

f (x) = p1(x)+
1
C

(
m

∑
i=1

ji

∑
r=1

Air

(x−ai)r +
n

∑
i=1

ki

∑
r=1

Birx+Cir

(x2 +bix+ ci)r

)
,

where the Air, Bir, and Cir are real constants. There are a number of ways these constants can be found.

1.3.3 Integration by partial fractions

Consider a rational function f (x) with the partial fraction decomposition of the form

f (x) = p1(x)+
m

∑
i=1

ji

∑
r=1

Air

(x−ai)r +
n

∑
i=1

Bix+Ci

(x2 +bix+ ci)
,

where p1(x) is a polynomial, Air,ai,Bi,bi,Ci,ci ∈ R and m, ji,n ∈ N. Then the indefinite integral of f (x) can be
derived as ∫

f (x)dx =
∫

p1(x)dx+
m

∑
i=1

ji

∑
r=1

∫ Air

(x−ai)r dx+
n

∑
i=1

∫ Bix+Ci

(x2 +bix+ ci)
dx

with

(i)
∫ Air

x−ai
dx = Air ln(|x−ai|)

(ii)
∫ Air

(x−ai)r dx = Air
(1−r)(x−ai)r−1 , r = 2,3, . . .

(iii)
∫ Bix+Ci

(x2+bix+ci)
dx = Bi

2 ln(|x2 +bix+ ci|)+
Ci−

biBi
2√

ci−
(

bi
2

)2
arctan

 x+ bi
2√

ci−
(

bi
2

)2


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2 Definite integrals

Given a function f of a real variable x and an interval [a,b] of the real line, the definite integral
∫ b

a
f (x)dx is

defined informally as the signed area of the region in the xy-plane that is bounded by the graph of f , the x-axis
and the vertical lines x = a and x = b. The area above the x-axis adds to the total and that below the x-axis
subtracts from the total.

2.1 Riemann definition of definite integral

By a division of an interval [a,b] we mean a finite set

D : a = x0 < x1 < x2 < · · ·< xn−1 < xn = b

of points decomposing the interval [a,b] into finitely many subintervals [xi−1,xi], i = 1, . . . ,n. The points
x0,x1, . . . ,xn are called division points. We say that a division D is equidistant if all subintervals [xi−1,xi],
i = 1, . . . ,n are of the same length. Hence,

xi = a+ i
b−a

n
, i = 0,1, . . . ,n , xi− xi−1 =

b−a
n

, i = 1, . . . ,n .

Definition 5 Let f be a continuous function on an interval [a,b]. Given an equidistant division D : a = x0 <
x1 < x2 < · · · < xn−1 < xn = b of [a,b], let {ci}n

i=1 be a sequence of real numbers such that ci ∈ [xi−1,xi],
i = 1, . . . ,n is arbitrarily chosen. The sum

Sn( f ) =
n

∑
i=1

f (ci)(xi− xi−1) = f (c1)(x1− x0)+ · · ·+ f (cn)(xn− xn−1)

is called the Riemann sum of the function f corresponding to the division D and the points {ci}n
i=1.

Theorem 6 Let f be a continuous function on an interval [a,b]. Then the limit lim
n→∞

Sn( f ) exists and its value is

independent on the choice of the points ci ∈ [xi−1,xi], i = 1, . . . ,n.

Definition 6 Let f be a continuous function on an interval [a,b]. The value lim
n→∞

Sn( f ) is called the Riemann

integral of f over [a,b] and it is denoted (R )
∫ b

a
f (x)dx. Hence,

(R )
∫ b

a
f (x)dx = lim

n→∞
Sn( f ).

The points a and b are called the limits of the integral, a is the lower limit and b is the upper limit.

2.2 Newton definition of definite integral

Definition 7 Let f be a function defined on an interval I and let F be its antiderivative on I. Let a,b ∈ I. The
Newton integral of f over the interval [a,b] (from a to b) is the real number F(b)−F(a). We write

(N )
∫ b

a
f (x)dx = [F(x)]ba = F(b)−F(a) .

Remark 1

• The value of the Newton integral of f does not depend on the choice of an antiderivative of f .

• If f is a continuous function on an interval I and x0 ∈ I, then

G(x) =
∫ x

x0

f (t)dt, x ∈ I.

is an antiderivative of f on I such that G(x0) = 0.
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Theorem 7 Let f be a continuous function on an interval [a,b]. Then f is both Newton and Riemann integrable
and the values of the respective integrals are the same, i.e

(N )
∫ b

a
f (x)dx = (R )

∫ b

a
f (x)dx.

Because during this course we only deal with continuous functions while studying integral calculus, the the-
orem above allows us not to make the distinction between Newton and Riemann definition of definite integrals.
Thus we will use the notation ∫ b

a
f (x)dx = (N )

∫ b

a
f (x)dx = (R )

∫ b

a
f (x)dx.

2.2.1 Evaluating definite integrals

Theorem 8 The following holds:

(i) ∀k ∈ R :
∫ b

a
k f (x)dx = k

∫ b

a
f (x)dx

(ii)
∫ b

a
f (x)±g(x)dx =

∫ b

a
f (x)dx±

∫ b

a
g(x)dx

(iii)
∫ b

a
f (x)dx =

∫ c

a
f (x)dx+

∫ b

c
f (x)dx, c ∈ (a,b)

(iv)
∫ b

a
f (x)dx =−

∫ a

b
f (x)dx

Theorem 9 (Per partes method)
Suppose functions u and v have continuous derivatives on an interval [a,b]. Then∫ b

a
u(x)v′(x)dx = [u(x)v(x)]ba−

∫ b

a
u′(x)v(x)dx .

Theorem 10 (Substitution method)
Let f (t) be a function continuous on an interval [a,b]. Let ϕ(x) be a continuously differentiable function on an
interval [α,β] such that it maps the interval [α,β] onto the interval [a,b] and ϕ(α) = a, ϕ(β) = b.

(i) Then ∫
β

α

f (ϕ(x))ϕ′(x)dx =
∫ b

a
f (t)dt = [F(t)]ba,

where F is an antiderivative of f on [a,b].

(ii) Further suppose ∀x ∈ [α,β] : ϕ′(x) 6= 0. Then∫ b

a
f (t)dt =

∫
β

α

f (ϕ(x))ϕ′(x)dx = [F(x)]βα,

where F is an antiderivative of f (ϕ(x))ϕ′(x) on [α,β].

In both cases t = ϕ(x) is the used substitution.

2.3 Improper integrals

Definition 8 When either the integrand or the integration domain of a definite integral are unbounded, the
resulting integral is called improper.

Definition 9 Let f be a continuous function defined on an open interval (a,b), let F be an antiderivative of f
on (a,b) and let at least one of the following conditions be satisfied:
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(i) a =−∞,

(ii) b =+∞,

(iii) f is unbounded on (a,b).

Then
∫ b

a
f (x)dx is improper and

∫ b

a
f (x)dx = [F(x)]ba = lim

x→b−
F(x) − lim

x→a+
F(x)

if the right-hand side of the equation is well defined. We say the improper integral converges if the right-hand
side is a finite number, it diverges otherwise.

Proposition 4 Let a function f be continuous on (a,b)⊆ R except finitely many points c1, . . . ,ck. Then∫ b

a
f (x)dx =

∫ c1

a
f (x)dx+

∫ c2

c1

f (x)dx+ · · ·+
∫ b

ck

f (x)dx.

2.4 Applications of definite integrals

2.4.1 Computing areas of plane figures

Theorem 11 Let f be a continuous nonnegative function defined on an interval [a,b]. Then the area P of the
planar figure bounded by the x-axis, by the graph of f and by the vertical lines x = a, x = b equals

P =
∫ b

a
f (x)dx .

Corollary 1 Let f be a continuous negative function defined on an interval [a,b]. Then the area P of the planar
figure bounded by the x-axis, by the graph of f and by the vertical lines x = a, x = b equals

P =−
∫ b

a
f (x)dx .

Corollary 2 Let f and g be continuous functions defined on an interval [a,b] such that ∀x∈ [a,b] : g(x)≤ f (x).
Then the area P of the planar figure bounded by the graphs of f and g and by the vertical lines x = a and x = b
equals

P =
∫ b

a
( f (x)−g(x))dx .

2.4.2 Lengths of curves

Consider a curve given by parametric equations

x = g(t), y = f (t), t ∈ [a,b].

The length ` of such curve is computed as

`=
∫ b

a

√
(g′(t))2 +( f ′(t))2 dt.

2.4.3 Volumes of solids

Consider the planar figure bounded by the graph of a continuous nonnegative function f defined on an interval
[a,b] and by the lines x = a, x = b, y = 0. Let this figure rotate about the x-axis. The three-dimensional solid
which we obtain in this way is called a solid of revolution. The volume V of such solid of revolution equals

V = π

∫ b

a
f 2(x)dx.
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2.4.4 Average value of a function

The average (or mean) value of a continuous function f defined on an interval [a,b] is the number

1
b−a

∫ b

a
f (x)dx.

The existence of the average value of continuous function is guaranteed by the following theorem:

Theorem 12 If f is a continuous function on an interval [a,b], then

∃ c ∈ (a,b) : f (c) =
1

b−a

∫ b

a
f (x)dx.

2.5 Numerical integration

Theorem 13 (Trapezoidal method)
Let f be a continuous function on an interval [a,b]. Consider an equidistant division

a = x0 < x1 < · · ·< xn = b

of [a,b] with the step h = b−a
n (the length of the intervals [xi−1,xi], i = 1, . . . ,n) and denote f (xi) = yi for

i = 0,1, . . .n. Then ∫ b

a
f (x)dx .

=
h
2
(y0 +2(y1 + · · ·+ yn−1)+ yn) .
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