1 Parametric equations of planar curves

Let $I \subseteq \mathbb{R}$ be an interval and let $\varphi_{1}, \varphi_{2}: I \rightarrow \mathbb{R}$ be real functions. Then the map

$$
\varphi: I \rightarrow \mathbb{R}^{2}
$$

assigns to each $t \in I$ the pair $\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ of real numbers, i.e.

$$
\varphi: t \mapsto\left(\varphi_{1}(t), \varphi_{2}(t)\right) .
$$

One refers to φ_{1}, φ_{2} as the coordinate functions of φ.

We say that φ is continuous on I if the function φ_{1} and φ_{2} are continuous on I.

If the functions φ_{1}, φ_{2} are differentiable on I, then one defines the derivative φ^{\prime} of the map φ as

$$
\varphi^{\prime}(t)=\left(\varphi_{1}^{\prime}(t), \varphi_{2}^{\prime}(t)\right) \text { for } t \in I
$$

Note that φ^{\prime} is again a map from I to \mathbb{R}^{2}.
Definition 1 Let $\varphi(t)=\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ be a continuous map on I and let $\varphi^{\prime}(t)$ exist for all $t \in I$ except for finitely many points $t_{1}, \ldots, t_{k} \in I$. Then the set \mathcal{K} defined as the following set of points:

$$
\mathcal{K}=\{\varphi(t) \mid t \in I\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=\varphi_{1}(t), y=\varphi_{2}(t), t \in I\right\}
$$

refers to as a planar curve.
The map φ is called parametric representation (parametrization) of the curve \mathcal{K}.
The equations

$$
\begin{aligned}
& x=\varphi_{1}(t) \\
& y=\varphi_{2}(t), \quad t \in I
\end{aligned}
$$

are called parametric equations of \mathcal{K}.
Remark 1 Parametric representation of a planar curve is not unique. There are infinitely many parameterizations of a given curve.

Definition 2 Let $\varphi: t \in I \mapsto\left(\varphi_{1}(t), \varphi_{2}(t)\right) \in \mathbb{R}^{2}$ be a parametrization of a curve \mathcal{K}. Then

$$
\vec{v}\left(t_{0}\right):=\varphi^{\prime}\left(t_{0}\right)=\left(\varphi_{1}^{\prime}\left(t_{0}\right), \varphi_{2}^{\prime}\left(t_{0}\right)\right)
$$

is the tangent vector to the curve \mathcal{K} at $t=t_{0}$.

- geometrical interpretation: the line passing through the point $\varphi\left(t_{0}\right)$ with the direction $\vec{v}\left(t_{0}\right)$ is the tangent line to the curve \mathcal{K} at the point $\varphi\left(t_{0}\right)$
- physical interpretation: the vector $\vec{v}\left(t_{0}\right)$ is the vector of instantaneous velocity of an object currently positioned at the point $\varphi\left(t_{0}\right)$ but moving along the curve \mathcal{K}

