1 Parametric equations of planar curves

Let $I \subseteq \mathbb{R}$ be an interval and let $\varphi_1, \varphi_2 : I \to \mathbb{R}$ be real functions. Then the map

 $\varphi: I \to \mathbb{R}^2$

assigns to each $t \in I$ the pair $(\varphi_1(t), \varphi_2(t))$ of real numbers, i.e.

 $\boldsymbol{\varphi}: t \mapsto (\boldsymbol{\varphi}_1(t), \boldsymbol{\varphi}_2(t)).$

One refers to φ_1, φ_2 as the *coordinate functions of* φ .

We say that φ is *continuous on I* if the function φ_1 and φ_2 are continuous on *I*.

If the functions φ_1, φ_2 are differentiable on *I*, then one defines the *derivative* φ' of the map φ as

$$\phi'(t) = (\phi'_1(t), \phi'_2(t))$$
 for $t \in I$.

Note that φ' is again a map from *I* to \mathbb{R}^2 .

Definition 1 Let $\varphi(t) = (\varphi_1(t), \varphi_2(t))$ be a continuous map on *I* and let $\varphi'(t)$ exist for all $t \in I$ except for finitely many points $t_1, \ldots, t_k \in I$. Then the set \mathcal{K} defined as the following set of points:

$$\mathcal{K} = \{ \mathbf{\varphi}(t) | t \in I \} = \{ (x, y) \in \mathbb{R}^2 | x = \mathbf{\varphi}_1(t), y = \mathbf{\varphi}_2(t), t \in I \}$$

refers to as a planar curve.

The map φ is called parametric representation (parametrization) of the curve K. The equations

$$x = \varphi_1(t)$$

$$y = \varphi_2(t), \quad t \in I$$

are called parametric equations of \mathcal{K} .

Remark 1 *Parametric representation of a planar curve is not unique. There are infinitely many parameterizations of a given curve.*

Definition 2 Let φ : $t \in I \mapsto (\varphi_1(t), \varphi_2(t)) \in \mathbb{R}^2$ be a parametrization of a curve \mathcal{K} . Then

 $\overrightarrow{v}(t_0) := \varphi'(t_0) = (\varphi'_1(t_0), \varphi'_2(t_0))$

is the tangent vector *to the curve* \mathcal{K} *at* $t = t_0$.

- geometrical interpretation: the line passing through the point $\varphi(t_0)$ with the direction $\overrightarrow{v}(t_0)$ is the tangent line to the curve \mathcal{K} at the point $\varphi(t_0)$
- physical interpretation: the vector $\vec{v}(t_0)$ is the vector of instantaneous velocity of an object currently positioned at the point $\varphi(t_0)$ but moving along the curve \mathcal{K}