
1 Derivatives

Definition 1 Let x0 ∈ R and let f be a function defined on a neighbourhood O(x0). If there exists the limit

lim
x→x0

f (x)− f (x0)

x− x0
,

f is said to be differentiable at the point x0. The value of the limit is called the derivative of f at x0 and we
denote it f ′(x0). Thus,

f ′(x0) = lim
x→x0

f (x)− f (x0)

x− x0
= lim

h→0

f (x0 +h)− f (x0)

h
.

If this limit is proper/improper, then f ′(x0) is said to be proper/improper derivative of f at x0.

Note that f ′ is a function with the domain D( f ′) = {x ∈ D( f )| f ′(x) exists and is proper}.

Geometrical meaning of derivatives:
f ′(x0) is a slope of the tangent line to the graph of a function f at the point x0
 the equation of the tangent line: y− f (x0) = f ′(x0)(x− x0)

Applications in physics, chemistry:
instantaneous velocity (of a moving body or reaction):

f (t0+ M t)− f (t0)
M t

(average rate of change of function values)
−→
Mt→0

f ′(t0)
(instantaneous rate of change of function values at time t0)

Definition 2 Let x0 ∈ R.

• Right-hand derivative f ′+(x0) of a function f at x0 is defined as f ′+(x0) = limx→x0+
f (x)− f (x0)

x−x0
if the limit

exists.

• Left-hand derivative f ′−(x0) of a function f at x0 is defined as f ′−(x0) = limx→x0−
f (x)− f (x0)

x−x0
if the limit

exists.

Theorem 1 A function f is differentiable at a point x0 if and only if f ′+(x0) = f ′−(x0). Then

f ′(x0) = f ′+(x0) = f ′−(x0).

Definition 3 (i) A function f has a derivative on an open interval (a,b) (is differentiable on (a,b)) if f is
differentiable at each point of (a,b).

(ii) A function f has a derivative on a closed interval [a,b ] if f is differentiable on (a,b), differentiable from
the right at a, and differentiable from the left at b.

Theorem 2 If a function f has proper derivative on (a,b), then f is continuous on (a,b).

Note that continuous functions are not always differentiable (see e.g. f (x) = |x| at x0 = 0).

To compute derivatives of functions one needs to be able to differentiate elementary functions, see the table
below, and to apply the rules for differentiation, see Theorem 3 and Definition 4.

Derivatives of elementary functions:

(k)′ = 0, k ∈ R (xa)′ = a · xa−1, a ∈ R (arcsin(x))′ =
1√

1− x2

(ax)′ = ax · ln(a), 1 6= a > 0 (loga(x))
′ =

1
x · ln(a)

, 1 6= a > 0 (arccos(x))′ =
−1√
1− x2

(sin(x))′ = cos(x) (cos(x))′ =−sin(x) (arctan(x))′ =
1

1+ x2

(tan(x))′ =
1

cos2(x)
(cot(x))′ =

−1
sin2(x)

(arccot(x))′ =
−1

1+ x2
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Theorem 3 (i) [k · f (x)]′ = k · f ′(x), k ∈ R

(ii) [ f (x)±g(x)]′ = f ′(x)±g′(x)

(iii) [ f (x) ·g(x)]′ = f ′(x) ·g(x)+ f (x) ·g′(x)

(iv)
[

f (x)
g(x)

]′
=

f ′(x) ·g(x)− f (x) ·g′(x)
g2(x)

, for g(x) 6= 0

(v) [ f (g(x))]′ = f ′(g(x)) ·g′(x)

Definition 4 (derivatives of higher orders)
Let n ∈ N. The n−th derivative f (n) of a function f is defined as f (n) =

[
f (n−1)

]′
, where f (0) = f .

Theorem 4

(i) Let a function f be right-hand side continuous at x0 and let lim
x→x0+

f ′(x) exists. Then f ′+(x0) = lim
x→x0+

f ′(x).

(ii) Let a function f be left-hand side continuous at x0 and let lim
x→x0−

f ′(x) exists. Then f ′−(x0) = lim
x→x0−

f ′(x).

1.1 Mean-value theorems

Theorem 5 Extreme value theorem
Let f be a function continuous on [a,b ], a,b ∈ R. Then f attains a maximum and a minimum, both at least
once, i.e.

∃c,d ∈ [a,b] ∀x ∈ [a,b] : f (c)≤ f (x)≤ f (d).

Theorem 6 Rolle’s mean-value theorem
Let f be a function continuous on [a,b ] and differentiable on (a,b). Further, let f (a) = f (b). Then

∃c ∈ (a,b) : f ′(c) = 0.

Theorem 7 Lagrange’s mean-value theorem
Let f be a function continuous on [a,b ] and differentiable on (a,b). Then

∃c ∈ (a,b) : f ′(c) =
f (b)− f (a)

b−a
.

Theorem 8 (Cauchy’s mean-value theorem)
Let f and g be functions continuous on [a,b ] and differentiable on (a,b). Let g′(x) 6= 0 on (a,b). Then

∃c ∈ (a,b) :
f ′(c)
g′(c)

=
f (b)− f (a)
g(b)−g(a)

.

1.2 L’Hospital’s rule

Theorem 9 Let

(i) lim
x→a

f (x) = lim
x→a

g(x) = 0 and lim
x→a

f ′(x)
g′(x)

exists, or

(ii) lim
x→a
|g(x)|=+∞ and lim

x→a

f ′(x)
g′(x)

exists.

Then lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

Note that in the theorem above there is no restriction on a. Thus, a ∈R∪{±∞}. Further, the theorem holds
for one-sided limits as well.
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1.3 Graphing functions

1.3.1 Monotonicity

By applying the Lagrange’s mean-value theorem one can derive the following characterization of monotonicity
of a function.

Theorem 10 Let f be a continuous and differentiable function on an interval I.

(i) If ∀x ∈ I : f ′(x)> 0, then f is increasing on I.

(ii) If ∀x ∈ I : f ′(x)≥ 0, then f is non-decreasing on I.

(iii) If ∀x ∈ I : f ′(x)< 0, then f is decreasing on I.

(iv) If ∀x ∈ I : f ′(x)≤ 0, then f is non-increasing on I.

(v) If ∀x ∈ I : f ′(x) = 0, then f is constant on I.

Theorem 11 Let f be a continuous function on an interval I. Let there exist finitely many points x1,x2, . . .xk ∈ I
such that f is differentiable on I \{x1, . . . ,xk}.

(i) If ∀x ∈ I \{x1, . . . ,xk} : f ′(x)> 0, then f is increasing on I.

(ii) If ∀x ∈ I \{x1, . . . ,xk} : f ′(x)≥ 0, then f is non-decreasing on I.

(iii) If ∀x ∈ I \{x1, . . . ,xk} : f ′(x)< 0, then f is decreasing on I.

(iv) If ∀x ∈ I \{x1, . . . ,xk} : f ′(x)≤ 0, then f is non-increasing on I.

1.3.2 Local extrema

Definition 5 Let f be a function defined on an interval (a,b). We say that f has a

(i) local maximum at x0 ∈ (a,b) if there exists O(x0) such that ∀x ∈ O(x0) : f (x)≤ f (x0),

(ii) strict local maximum at x0 ∈ (a,b) if there exists P (x0) such that ∀x ∈ P (x0) : f (x)< f (x0),

(iii) local minimum at x0 ∈ (a,b) if there exists O(x0) such that ∀x ∈ O(x0) : f (x)≥ f (x0),

(iv) strict local minimum at x0 ∈ (a,b) if there exists P (x0) such that ∀x ∈ P (x0) : f (x)> f (x0).

Local maxima and minima of f are referred to as local extrema of f .

Theorem 12 Let f be a continuous function on an interval (a,b) and let x0 ∈ (a,b).

(i) If ∃P (x0) such that ∀x ∈ P−(x0) : f ′(x) > 0 and ∀x ∈ P+(x0) : f ′(x) < 0, then f has a strict local
maximum at x0.

(ii) If ∃P (x0) such that ∀x ∈ P−(x0) : f ′(x) < 0 and ∀x ∈ P+(x0) : f ′(x) > 0, then f has a strict local
minimum at x0.

(iii) If f ′(x0) 6= 0, then f does not have a local extremum at x0.

Theorem 13 Let f be a function defined on an interval (a,b) and let x0 ∈ (a,b).

(i) If f ′(x0) = 0 and f ′′(x0)> 0, then f has a strict local minimum at x0.

(ii) If f ′(x0) = 0 and f ′′(x0)< 0, then f has a strict local maximum at x0.
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1.3.3 Global extrema

Definition 6 We say that a function f has a

(i) global maximum at x0 ∈ D( f ) if ∀x ∈ D( f ) : f (x)≤ f (x0).

(ii) global minimum at x0 ∈ D( f ) if ∀x ∈ D( f ) : f (x)≥ f (x0).

Note that a function does not need to have a global maximum and/or minimum.

Theorem 14 Let f be a continuous function defined on a closed interval [a,b]. Then f has a global maximum
and a global minimum at a point of [a,b].

1.3.4 Convexity and concavity

Definition 7 Let f be a continuous function on an interval I.

(i) If for any x1,x2,x3 ∈ I such that x1 < x2 < x3 it holds that the point P2 = [x2, f (x2)] lies on or below the
line joining the points P1 = [x1, f (x1)] and P3 = [x3, f (x3)], then we say that f is convex on I.

(ii) If for any x1,x2,x3 ∈ I such that x1 < x2 < x3 it holds that the point P2 = [x2, f (x2)] lies on or above the
line joining the points P1 = [x1, f (x1)] and P3 = [x3, f (x3)], then we say that f is concave on I.

Theorem 15 Let f be a function such that f ′′ is defined on an interval I ( f has a second derivative on I).

(i) If f ′′(x)≥ 0 on I, then f is convex on I.

(ii) If f ′′(x)≤ 0 on I, then f is concave on I.

Definition 8 Let f be a function defined on (a,b) and let x0 ∈ (a,b). If

• f is continuous on (a,b),

• f has a derivative at x0 (proper or improper),

• f is concave on (a,x0) and convex on (x0,b), or f is convex on (a,x0) and concave on (x0,b),

then we say that f has an inflection point at (x0, f (x0)).

Theorem 16 Let a function f have a second derivative f ′′ on an interval (a,b).

(i) If there exists P (x0) such that ∀x ∈ P−(x0) : f ′′(x)> 0 and ∀x ∈ P+(x0) : f ′′(x)< 0, or vice versa, then
f has an inflection point at (x0, f (x0)).

(ii) If f ′′(x0) = 0 and f ′′′(x0) 6= 0, then f has an inflection point at (x0, f (x0)).

Remark 1 The points x ∈ D( f ) such that

• f ′(x) = 0 are called stationary points,

• f ′(x) = 0 or f ′ is not defined at x are called critical points.

1.3.5 Asymptotes

Definition 9 Let f be a function.

• If there exists a ∈ R such that lim
x→a+

f (x) = ±∞ or lim
x→a−

f (x) = ±∞, then the line given by the equation

x = a is called a vertical asymptote of the graph of f .

• If lim
x→∞

f (x) = b ∈R or lim
x→−∞

f (x) = b ∈R, then the line given by the equation y = b is called a horizontal

asymptote of the graph of f at ∞ or −∞, respectively.

• If lim
x→∞

( f (x)−k x−q)= 0 or lim
x→−∞

( f (x)−k x−q)= 0 for some k,q∈R, then the line given by the equation

y = k x+q is called an oblique asymptote of the graph of f at ∞ or −∞, respectively.

Theorem 17 The line y = k x+q is an oblique asymptote of the graph of a function f at ±∞ if and only if

lim
x→±∞

f (x)
x

= k ∈ R and lim
x→±∞

( f (x)− k x) = q ∈ R.
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1.3.6 Graphing functions

To sketch a graph of a function f one follows the steps:

1. determine D( f ), decide on properties as being periodic, even, odd

2. discuss continuity of f , compute limits (one-sided limits) at the endpoints of the domain and at the points
of discontinuity of f

3. specify the asymptotes of the graph of f

4. compute f ′(x) and based on it discuss monotonicity and local extrema of f

5. compute f ′′(x) and based on it discuss convexity, concavity and inflection points of f

6. sketch the graph of f and determine H( f )

1.4 Newton’s method - method of tangents

Newton’s method is a method to approximate a root of a real-valued function f , i.e. to approximate a solution
of the equation f (x) = 0. To ensure the existence of a root and the convergence of its approximations (speed
and monotonicity is of interest) one assumes f has certain properties. We will formulate Newton’s method for a
continuous and twice differentiable function f . These assumptions imply quadratic and monotone convergence
of the method.

Proposition 1 Let f be a continuous function on an interval [a,b ] such that f (a) f (b) < 0. Then ∃c ∈ (a,b)
such that f (c) = 0 (such c is called a root of the equation f (x) = 0).

Definition 10 We say an interval [a,b ] is a separation interval of an equation f (x) = 0 if there exists a unique
root α of this equation on [a,b ].

Theorem 18 (Newton’s method)
Let f be a continuous function on an interval [a,b] such that it has first and second derivative on [a,b]. Further,
let us assume the interval [a,b] is a separation interval of the equation f (x) = 0, i.e. we assume:

(i) f (a) f (b)< 0,

(ii) ∀x ∈ [a,b] : f ′(x) 6= 0.

For the approximations xn, constructed below, of the root α ∈ [a,b] of f (x) = 0 to converge monotonically to α

we assume

(iii) ∀x ∈ [a,b] : f ′′(x) 6= 0.

Let us choose the 0-th approximation of α as

(iv) x0 ∈ [a,b ] such that f (x0) f ′′(x0)> 0

and let us construct a sequence {xn}∞
n=0 (xn is referred to as n-th approximation of α) given by the following

recursive formula:

xn+1 = xn−
f (xn)

f ′(xn)
.

Then
lim
n→∞

xn = α.
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1.5 Taylor polynomial

Definition 11 A function f of the form

f (x) = a0 +a1x+a2x2 + · · ·+anxn ,

where ai ∈ R for i = 0,1, . . .n, an 6= 0, is called a polynomial of degree n with constant coefficients. Note that
D( f ) = R.

Definition 12 Let f be a function which has proper derivatives at a point x0 up to order n ≥ 1. Then the
polynomial

Tn(x) = f (x0)+
f ′(x0)

1!
(x− x0)+

f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

is called the Taylor polynomial of degree n of f at x0 (or n-th order Taylor polynomial of f at x0).

Proposition 2 For the Taylor polynomial Tn(x) of a function f at a point x0 it holds that

Tn(x0) = f (x0), T ′n(x0) = f ′(x0), . . . ,T
(n)

n (x0) = f (n)(x0).

From the proposition above one can conclude that f (x) and Tn(x) have ”similar behaviour” on a neighbour-
hood of x0, i.e. f (x) .

= Tn(x) for x ∈ O(x0), which means that Tn(x) approximates f (x) close to x0.

Theorem 19 (Taylor theorem)
Let f : R→ R be a function which has at x0 ∈ R proper derivatives up to order n ≥ 1. Then there exists a
function r : R→ R such that

f (x) = Tn(x)+ r(x)(x− x0)
n and lim

x→x0
r(x) = 0.

Taylor theorem describes the asymptotic behaviour of the remainder term

Rn(x) := f (x)−Tn(x) = r(x)(x− x0)
n

which is the approximation error when approximating f with its Taylor polynomial. Under stronger regularity
assumptions on f there are several precise formulae for the remainder term Rn of the Taylor polynomial, one of
the most common ones is the Lagrange form of the remainder specified in the following theorem.

Theorem 20 Let f be a n+1 times differentiable function on an interval I and let Tn(x) be the Taylor polynomial
of f at x0 ∈ I. Then

∀x ∈ I ∃c ∈ (x,x0) (or c ∈ (x0,x)) : Rn(x) =
f (n+1)(c)
(n+1)!

(x− x0)
n+1,

i.e.

f (x) = Tn(x)+
f (n+1)(c)
(n+1)!

(x− x0)
n+1 .

The last equality is called the Taylor formula.

1.6 Differential of a function

Definition 13

(i) The difference of a function f : R→ R of a single real variable x is the function ∆ f of two independent
real variables x and ∆x given by

∆ f (x,∆x) = f (x+∆x)− f (x).

(ii) The differential of a function f : R→ R of a single real variable x is the function d f of two independent
real variables x and ∆x given by

d f (x,∆x) = f ′(x)∆x.
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Remark 2

(i) Instead of d f (x,∆x) one can write d f (x).

(ii) Since dx(x,∆x) = 1 ∆x, it is conventional to write ∆x = dx. Hence d f (x) = f ′(x)dx.

(iii) Note that from the Taylor formula it follows that ∆ f (x,∆x) = d f (x,∆x)+R1(x). Thus, d f (x,∆x) approx-
imates ∆ f (x,∆x) and one can say that the differential is a linear approximation to the increment of a
function.
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