1 Derivatives

Definition 1 Let $x_0 \in \mathbb{R}$ and let f be a function defined on a neighbourhood $O(x_0)$. If there exists the limit

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0},$$

f is said to be differentiable at the point x_0 . The value of the limit is called the derivative of f at x_0 and we denote it $f'(x_0)$. Thus,

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

If this limit is proper/improper, then $f'(x_0)$ is said to be proper/improper derivative of f at x_0 .

Note that f' is a function with the domain $D(f') = \{x \in D(f) | f'(x) \text{ exists and is proper} \}$.

Geometrical meaning of derivatives:

 $f'(x_0)$ is a slope of the tangent line to the graph of a function f at the point x_0 \rightarrow the equation of the tangent line: $y - f(x_0) = f'(x_0)(x - x_0)$

Applications in physics, chemistry:

instantaneous velocity (of a moving body or reaction):

$$\frac{f(t_0 + \Delta t) - f(t_0)}{\Delta t} \longrightarrow f'(t_0)$$

(average rate of change of function values) $\Delta t \to 0$ (instantaneous rate of change of function values at time t_0)

Definition 2 *Let* $x_0 \in \mathbb{R}$ *.*

- Right-hand derivative $f'_+(x_0)$ of a function f at x_0 is defined as $f'_+(x_0) = \lim_{x \to x_0+} \frac{f(x) f(x_0)}{x x_0}$ if the limit exists.
- Left-hand derivative $f'_{-}(x_0)$ of a function f at x_0 is defined as $f'_{-}(x_0) = \lim_{x \to x_0-} \frac{f(x) f(x_0)}{x x_0}$ if the limit exists.

Theorem 1 A function f is differentiable at a point x_0 if and only if $f'_+(x_0) = f'_-(x_0)$. Then

$$f'(x_0) = f'_+(x_0) = f'_-(x_0).$$

- **Definition 3** (*i*) A function f has a derivative on an open interval (a,b) (is differentiable on (a,b)) if f is differentiable at each point of (a,b).
 - (ii) A function f has a derivative on a closed interval [a,b] if f is differentiable on (a,b), differentiable from the right at a, and differentiable from the left at b.

Theorem 2 If a function f has proper derivative on (a,b), then f is continuous on (a,b).

Note that continuous functions are not always differentiable (see e.g. f(x) = |x| at $x_0 = 0$).

To compute derivatives of functions one needs to be able to differentiate elementary functions, see the table below, and to apply the rules for differentiation, see Theorem 3 and Definition 4.

Derivatives of elementary functions:

$(k)'=0,\ k\in\mathbb{R}$	$(x^a)' = a \cdot x^{a-1}, \ a \in \mathbb{R}$	$(\arcsin(x))' = \frac{1}{\sqrt{1-r^2}}$
$(a^x)' = a^x \cdot \ln(a), \ 1 \neq a > 0$	$(\log_a(x))' = \frac{1}{x \cdot \ln(a)}, \ 1 \neq a > 0$	$(\arccos(x))' = \frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}$
$(\sin(x))' = \cos(x)$	$(\cos(x))' = -\sin(x)$	$(\arctan(x))' = \frac{1}{1+x^2}$
$(\tan(x))' = \frac{1}{\cos^2(x)}$	$(\cot(x))' = \frac{-1}{\sin^2(x)}$	$(\operatorname{arccot}(x))' = \frac{1-1}{1+x^2}$

Theorem 3 (i)
$$[k \cdot f(x)]' = k \cdot f'(x), k \in \mathbb{R}$$

(ii) $[f(x) \pm g(x)]' = f'(x) \pm g'(x)$
(iii) $[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
(iv) $\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}, \text{ for } g(x) \neq 0$
(v) $[f(g(x))]' = f'(g(x)) \cdot g'(x)$

Definition 4 (derivatives of higher orders) Let $n \in \mathbb{N}$. The *n*-th derivative $f^{(n)}$ of a function *f* is defined as $f^{(n)} = [f^{(n-1)}]'$, where $f^{(0)} = f$.

Theorem 4

- (i) Let a function f be right-hand side continuous at x_0 and let $\lim_{x \to x_0+} f'(x)$ exists. Then $f'_+(x_0) = \lim_{x \to x_0+} f'(x)$.
- (ii) Let a function f be left-hand side continuous at x_0 and let $\lim_{x \to x_0-} f'(x)$ exists. Then $f'_-(x_0) = \lim_{x \to x_0-} f'(x)$.

1.1 Mean-value theorems

Theorem 5 Extreme value theorem

Let f be a function continuous on [a,b], $a,b \in \mathbb{R}$. Then f attains a maximum and a minimum, both at least once, i.e.

$$\exists c, d \in [a, b] \ \forall x \in [a, b] : \quad f(c) \le f(x) \le f(d).$$

Theorem 6 Rolle's mean-value theorem

Let f be a function continuous on [a,b] and differentiable on (a,b). Further, let f(a) = f(b). Then

$$\exists c \in (a,b): \quad f'(c) = 0$$

Theorem 7 Lagrange's mean-value theorem

Let f be a function continuous on [a,b] and differentiable on (a,b). Then

$$\exists c \in (a,b): \quad f'(c) = \frac{f(b) - f(a)}{b - a}$$

Theorem 8 (Cauchy's mean-value theorem)

Let f and g be functions continuous on [a,b] and differentiable on (a,b). Let $g'(x) \neq 0$ on (a,b). Then

$$\exists c \in (a,b): \quad \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

1.2 L'Hospital's rule

Theorem 9 Let

(i)
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
 and $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists, or

(ii)
$$\lim_{x \to a} |g(x)| = +\infty$$
 and $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists

Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$

Note that in the theorem above there is no restriction on *a*. Thus, $a \in \mathbb{R} \cup \{\pm \infty\}$. Further, the theorem holds for one-sided limits as well.

1.3 Graphing functions

1.3.1 Monotonicity

By applying the Lagrange's mean-value theorem one can derive the following characterization of monotonicity of a function.

Theorem 10 Let f be a continuous and differentiable function on an interval I.

- (i) If $\forall x \in I$: f'(x) > 0, then f is increasing on I.
- (ii) If $\forall x \in I$: $f'(x) \ge 0$, then f is non-decreasing on I.
- (iii) If $\forall x \in I$: f'(x) < 0, then f is decreasing on I.
- (iv) If $\forall x \in I$: $f'(x) \leq 0$, then f is non-increasing on I.
- (v) If $\forall x \in I$: f'(x) = 0, then f is constant on I.

Theorem 11 Let f be a continuous function on an interval I. Let there exist finitely many points $x_1, x_2, ..., x_k \in I$ such that f is differentiable on $I \setminus \{x_1, ..., x_k\}$.

- (i) If $\forall x \in I \setminus \{x_1, \dots, x_k\}$: f'(x) > 0, then f is increasing on I.
- (ii) If $\forall x \in I \setminus \{x_1, \dots, x_k\}$: $f'(x) \ge 0$, then f is non-decreasing on I.
- (iii) If $\forall x \in I \setminus \{x_1, \dots, x_k\}$: f'(x) < 0, then f is decreasing on I.
- (iv) If $\forall x \in I \setminus \{x_1, \dots, x_k\}$: $f'(x) \leq 0$, then f is non-increasing on I.

1.3.2 Local extrema

Definition 5 Let f be a function defined on an interval (a,b). We say that f has a

- (i) local maximum at $x_0 \in (a,b)$ if there exists $O(x_0)$ such that $\forall x \in O(x_0)$: $f(x) \leq f(x_0)$,
- (*ii*) strict local maximum at $x_0 \in (a, b)$ if there exists $\mathcal{P}(x_0)$ such that $\forall x \in \mathcal{P}(x_0)$: $f(x) < f(x_0)$,
- (iii) local minimum at $x_0 \in (a, b)$ if there exists $O(x_0)$ such that $\forall x \in O(x_0) : f(x) \ge f(x_0)$,
- (iv) strict local minimum at $x_0 \in (a, b)$ if there exists $\mathcal{P}(x_0)$ such that $\forall x \in \mathcal{P}(x_0) : f(x) > f(x_0)$.

Local maxima and minima of f are referred to as local extrema of f.

Theorem 12 Let f be a continuous function on an interval (a,b) and let $x_0 \in (a,b)$.

- (i) If $\exists \mathcal{P}(x_0)$ such that $\forall x \in \mathcal{P}^-(x_0)$: f'(x) > 0 and $\forall x \in \mathcal{P}^+(x_0)$: f'(x) < 0, then f has a strict local maximum at x_0 .
- (ii) If $\exists \mathcal{P}(x_0)$ such that $\forall x \in \mathcal{P}^-(x_0)$: f'(x) < 0 and $\forall x \in \mathcal{P}^+(x_0)$: f'(x) > 0, then f has a strict local minimum at x_0 .
- (iii) If $f'(x_0) \neq 0$, then f does not have a local extremum at x_0 .

Theorem 13 *Let f be a function defined on an interval* (a,b) *and let* $x_0 \in (a,b)$ *.*

- (i) If $f'(x_0) = 0$ and $f''(x_0) > 0$, then f has a strict local minimum at x_0 .
- (ii) If $f'(x_0) = 0$ and $f''(x_0) < 0$, then f has a strict local maximum at x_0 .

1.3.3 Global extrema

Definition 6 We say that a function f has a

- (*i*) global maximum at $x_0 \in D(f)$ if $\forall x \in D(f) : f(x) \le f(x_0)$.
- (*ii*) global minimum at $x_0 \in D(f)$ if $\forall x \in D(f) : f(x) \ge f(x_0)$.

Note that a function does not need to have a global maximum and/or minimum.

Theorem 14 Let f be a continuous function defined on a closed interval [a,b]. Then f has a global maximum and a global minimum at a point of [a,b].

1.3.4 Convexity and concavity

Definition 7 Let f be a continuous function on an interval I.

- (i) If for any $x_1, x_2, x_3 \in I$ such that $x_1 < x_2 < x_3$ it holds that the point $P_2 = [x_2, f(x_2)]$ lies on or below the line joining the points $P_1 = [x_1, f(x_1)]$ and $P_3 = [x_3, f(x_3)]$, then we say that f is convex on I.
- (ii) If for any $x_1, x_2, x_3 \in I$ such that $x_1 < x_2 < x_3$ it holds that the point $P_2 = [x_2, f(x_2)]$ lies on or above the line joining the points $P_1 = [x_1, f(x_1)]$ and $P_3 = [x_3, f(x_3)]$, then we say that f is concave on I.

Theorem 15 Let f be a function such that f'' is defined on an interval I (f has a second derivative on I).

- (i) If $f''(x) \ge 0$ on I, then f is convex on I.
- (ii) If $f''(x) \leq 0$ on I, then f is concave on I.

Definition 8 *Let f be a function defined on* (a,b) *and let* $x_0 \in (a,b)$ *. If*

- *f* is continuous on (*a*,*b*),
- *f* has a derivative at x_0 (proper or improper),
- f is concave on (a, x_0) and convex on (x_0, b) , or f is convex on (a, x_0) and concave on (x_0, b) ,

then we say that f has an inflection point at $(x_0, f(x_0))$.

Theorem 16 Let a function f have a second derivative f'' on an interval (a,b).

- (i) If there exists $\mathcal{P}(x_0)$ such that $\forall x \in \mathcal{P}^-(x_0)$: f''(x) > 0 and $\forall x \in \mathcal{P}^+(x_0)$: f''(x) < 0, or vice versa, then *f* has an inflection point at $(x_0, f(x_0))$.
- (ii) If $f''(x_0) = 0$ and $f'''(x_0) \neq 0$, then f has an inflection point at $(x_0, f(x_0))$.

Remark 1 The points $x \in D(f)$ such that

- f'(x) = 0 are called stationary points,
- f'(x) = 0 or f' is not defined at x are called critical points.

1.3.5 Asymptotes

Definition 9 Let f be a function.

- If there exists $a \in \mathbb{R}$ such that $\lim_{x \to a^+} f(x) = \pm \infty$ or $\lim_{x \to a^-} f(x) = \pm \infty$, then the line given by the equation x = a is called a vertical asymptote of the graph of f.
- If $\lim_{x \to \infty} f(x) = b \in \mathbb{R}$ or $\lim_{x \to -\infty} f(x) = b \in \mathbb{R}$, then the line given by the equation y = b is called a horizontal asymptote of the graph of f at ∞ or $-\infty$, respectively.
- If $\lim_{x\to\infty} (f(x) kx q) = 0$ or $\lim_{x\to-\infty} (f(x) kx q) = 0$ for some $k, q \in \mathbb{R}$, then the line given by the equation y = kx + q is called an oblique asymptote of the graph of f at ∞ or $-\infty$, respectively.

Theorem 17 The line y = kx + q is an oblique asymptote of the graph of a function f at $\pm \infty$ if and only if

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = k \in \mathbb{R} \quad and \quad \lim_{x \to \pm \infty} (f(x) - kx) = q \in \mathbb{R}$$

1.3.6 Graphing functions

To sketch a graph of a function f one follows the steps:

- 1. determine D(f), decide on properties as being periodic, even, odd
- 2. discuss continuity of f, compute limits (one-sided limits) at the endpoints of the domain and at the points of discontinuity of f
- 3. specify the asymptotes of the graph of f
- 4. compute f'(x) and based on it discuss monotonicity and local extrema of f
- 5. compute f''(x) and based on it discuss convexity, concavity and inflection points of f
- 6. sketch the graph of f and determine H(f)

1.4 Newton's method - method of tangents

Newton's method is a method to approximate a root of a real-valued function f, i.e. to approximate a solution of the equation f(x) = 0. To ensure the existence of a root and the convergence of its approximations (speed and monotonicity is of interest) one assumes f has certain properties. We will formulate Newton's method for a continuous and twice differentiable function f. These assumptions imply quadratic and monotone convergence of the method.

Proposition 1 Let f be a continuous function on an interval [a,b] such that f(a) f(b) < 0. Then $\exists c \in (a,b)$ such that f(c) = 0 (such c is called a root of the equation f(x) = 0).

Definition 10 We say an interval [a,b] is a separation interval of an equation f(x) = 0 if there exists a unique root α of this equation on [a,b].

Theorem 18 (Newton's method)

Let f be a continuous function on an interval [a,b] such that it has first and second derivative on [a,b]. Further, let us assume the interval [a,b] is a separation interval of the equation f(x) = 0, i.e. we assume:

- (i) f(a)f(b) < 0,
- (*ii*) $\forall x \in [a,b] : f'(x) \neq 0.$

For the approximations x_n , constructed below, of the root $\alpha \in [a,b]$ of f(x) = 0 to converge monotonically to α we assume

(iii) $\forall x \in [a,b] : f''(x) \neq 0.$

Let us choose the 0-th approximation of α as

(*iv*) $x_0 \in [a,b]$ such that $f(x_0) f''(x_0) > 0$

and let us construct a sequence $\{x_n\}_{n=0}^{\infty}$ (x_n is referred to as n-th approximation of α) given by the following recursive formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Then

$$\lim_{n\to\infty}x_n=\alpha.$$

1.5 Taylor polynomial

Definition 11 A function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
,

where $a_i \in \mathbb{R}$ for i = 0, 1, ..., n, $a_n \neq 0$, is called a polynomial of degree *n* with constant coefficients. Note that $D(f) = \mathbb{R}$.

Definition 12 Let f be a function which has proper derivatives at a point x_0 up to order $n \ge 1$. Then the polynomial

$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

is called the Taylor polynomial of degree n of f at x_0 (or n-th order Taylor polynomial of f at x_0).

Proposition 2 For the Taylor polynomial $T_n(x)$ of a function f at a point x_0 it holds that

$$T_n(x_0) = f(x_0), T'_n(x_0) = f'(x_0), \dots, T_n^{(n)}(x_0) = f^{(n)}(x_0).$$

From the proposition above one can conclude that f(x) and $T_n(x)$ have "similar behaviour" on a neighbourhood of x_0 , i.e. $f(x) \doteq T_n(x)$ for $x \in O(x_0)$, which means that $T_n(x)$ approximates f(x) close to x_0 .

Theorem 19 (Taylor theorem)

Let $f : \mathbb{R} \to \mathbb{R}$ be a function which has at $x_0 \in \mathbb{R}$ proper derivatives up to order $n \ge 1$. Then there exists a function $r : \mathbb{R} \to \mathbb{R}$ such that

$$f(x) = T_n(x) + r(x)(x - x_0)^n$$
 and $\lim_{x \to x_0} r(x) = 0.$

Taylor theorem describes the asymptotic behaviour of the remainder term

$$R_n(x) := f(x) - T_n(x) = r(x)(x - x_0)^n$$

which is the approximation error when approximating f with its Taylor polynomial. Under stronger regularity assumptions on f there are several precise formulae for the remainder term R_n of the Taylor polynomial, one of the most common ones is the Lagrange form of the remainder specified in the following theorem.

Theorem 20 Let f be a n+1 times differentiable function on an interval I and let $T_n(x)$ be the Taylor polynomial of f at $x_0 \in I$. Then

$$\forall x \in I \ \exists c \in (x, x_0) \ (or \ c \in (x_0, x)) : \ R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1},$$

i.e.

$$f(x) = T_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$

The last equality is called the Taylor formula.

1.6 Differential of a function

Definition 13

(*i*) The difference of a function $f : \mathbb{R} \to \mathbb{R}$ of a single real variable x is the function Δf of two independent real variables x and Δx given by

$$\Delta f(x, \Delta x) = f(x + \Delta x) - f(x).$$

(*ii*) The differential of a function $f : \mathbb{R} \to \mathbb{R}$ of a single real variable x is the function df of two independent real variables x and Δx given by

$$df(x,\Delta x) = f'(x)\Delta x$$

Remark 2

- (*i*) Instead of $df(x, \Delta x)$ one can write df(x).
- (ii) Since $dx(x,\Delta x) = 1 \Delta x$, it is conventional to write $\Delta x = dx$. Hence df(x) = f'(x) dx.
- (iii) Note that from the Taylor formula it follows that $\Delta f(x, \Delta x) = df(x, \Delta x) + R_1(x)$. Thus, $df(x, \Delta x)$ approximates $\Delta f(x, \Delta x)$ and one can say that the differential is a linear approximation to the increment of a function.