1 Derivatives

Definition 1 Let $x_{0} \in \mathbb{R}$ and let f be a function defined on a neighbourhood $O\left(x_{0}\right)$. If there exists the limit

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

f is said to be differentiable at the point x_{0}. The value of the limit is called the derivative of f at x_{0} and we denote it $f^{\prime}\left(x_{0}\right)$. Thus,

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

If this limit is proper/improper, then $f^{\prime}\left(x_{0}\right)$ is said to be proper/improper derivative of f at x_{0}.
Note that f^{\prime} is a function with the domain $D\left(f^{\prime}\right)=\left\{x \in D(f) \mid f^{\prime}(x)\right.$ exists and is proper $\}$.

Geometrical meaning of derivatives:

$f^{\prime}\left(x_{0}\right)$ is a slope of the tangent line to the graph of a function f at the point x_{0}
\rightsquigarrow the equation of the tangent line: $\quad y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$
Applications in physics, chemistry:
instantaneous velocity (of a moving body or reaction):

$$
\begin{array}{cl}
\frac{f\left(t_{0}+\Delta t\right)-f\left(t_{0}\right)}{\Delta t} \\
\text { of function values) }
\end{array} \quad \underset{\Delta t \rightarrow 0}{ } \quad \begin{aligned}
& f^{\prime}\left(t_{0}\right) \\
& \text { (instar }
\end{aligned}
$$

(average rate of change of function values)

Definition 2 Let $x_{0} \in \mathbb{R}$.

 exists.

- Left-hand derivative $f_{-}^{\prime}\left(x_{0}\right)$ of a function f at x_{0} is defined as $f_{-}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}-} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ if the limit exists.

Theorem 1 A function f is differentiable at a point x_{0} if and only if $f_{+}^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right)$. Then

$$
f^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right)
$$

Definition 3 (i) A function f has a derivative on an open interval (a, b) (is differentiable on (a, b)) if f is differentiable at each point of (a, b).
(ii) A function f has a derivative on a closed interval $[a, b]$ if f is differentiable on (a, b), differentiable from the right at a, and differentiable from the left at b.

Theorem 2 If a function f has proper derivative on (a, b), then f is continuous on (a, b).
Note that continuous functions are not always differentiable (see e.g. $f(x)=|x|$ at $x_{0}=0$).
To compute derivatives of functions one needs to be able to differentiate elementary functions, see the table below, and to apply the rules for differentiation, see Theorem 3 and Definition 4.

Derivatives of elementary functions:

$(k)^{\prime}=0, k \in \mathbb{R}$	$\left(x^{a}\right)^{\prime}=a \cdot x^{a-1}, a \in \mathbb{R}$	$(\arcsin (x))^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$
$\left(a^{x}\right)^{\prime}=a^{x} \cdot \ln (a), 1 \neq a>0$	$\left(\log _{a}(x)\right)^{\prime}=\frac{1}{x \cdot \ln (a)}, 1 \neq a>0$	$(\arccos (x))^{\prime}=\frac{-1}{\sqrt{1-x^{2}}}$
$(\sin (x))^{\prime}=\cos (x)$	$(\cos (x))^{\prime}=-\sin (x)$	$(\arctan (x))^{\prime}=\frac{1}{1+x^{2}}$
$(\tan (x))^{\prime}=\frac{1}{\cos ^{2}(x)}$	$(\cot (x))^{\prime}=\frac{-1}{\sin ^{2}(x)}$	$(\operatorname{arccot}(x))^{\prime}=\frac{-1}{1+x^{2}}$

Theorem 3 (i) $[k \cdot f(x)]^{\prime}=k \cdot f^{\prime}(x), k \in \mathbb{R}$
(ii) $[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
(iii) $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
(iv) $\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g^{2}(x)}$, for $g(x) \neq 0$
(v) $[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Definition 4 (derivatives of higher orders)
Let $n \in \mathbb{N}$. The $n-$ th derivative $f^{(n)}$ of a function f is defined as $f^{(n)}=\left[f^{(n-1)}\right]^{\prime}$, where $f^{(0)}=f$.

Theorem 4

(i) Let a function f be right-hand side continuous at x_{0} and let $\lim _{x \rightarrow x_{0}+} f^{\prime}(x)$ exists. Then $f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}+} f^{\prime}(x)$.
(ii) Let a function f be left-hand side continuous at x_{0} and let $\lim _{x \rightarrow x_{0}-} f^{\prime}(x)$ exists. Then $f_{-}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}-} f^{\prime}(x)$.

1.1 Mean-value theorems

Theorem 5 Extreme value theorem

Let f be a function continuous on $[a, b], a, b \in \mathbb{R}$. Then f attains a maximum and a minimum, both at least once, i.e.

$$
\exists c, d \in[a, b] \forall x \in[a, b]: \quad f(c) \leq f(x) \leq f(d)
$$

Theorem 6 Rolle's mean-value theorem

Let f be a function continuous on $[a, b]$ and differentiable on (a, b). Further, let $f(a)=f(b)$. Then

$$
\exists c \in(a, b): \quad f^{\prime}(c)=0
$$

Theorem 7 Lagrange's mean-value theorem

Let f be a function continuous on $[a, b]$ and differentiable on (a, b). Then

$$
\exists c \in(a, b): \quad f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem 8 (Cauchy's mean-value theorem)

Let f and g be functions continuous on $[a, b]$ and differentiable on (a, b). Let $g^{\prime}(x) \neq 0$ on (a, b). Then

$$
\exists c \in(a, b): \quad \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

1.2 L'Hospital's rule

Theorem 9 Let
(i) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ and $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, or
(ii) $\lim _{x \rightarrow a}|g(x)|=+\infty$ and $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists.

Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.
Note that in the theorem above there is no restriction on a. Thus, $a \in \mathbb{R} \cup\{ \pm \infty\}$. Further, the theorem holds for one-sided limits as well.

1.3 Graphing functions

1.3.1 Monotonicity

By applying the Lagrange's mean-value theorem one can derive the following characterization of monotonicity of a function.

Theorem 10 Let f be a continuous and differentiable function on an interval I.
(i) If $\forall x \in I: f^{\prime}(x)>0$, then f is increasing on I.
(ii) If $\forall x \in I: f^{\prime}(x) \geq 0$, then f is non-decreasing on I.
(iii) If $\forall x \in I: f^{\prime}(x)<0$, then f is decreasing on I.
(iv) If $\forall x \in I: f^{\prime}(x) \leq 0$, then f is non-increasing on I.
(v) If $\forall x \in I: f^{\prime}(x)=0$, then f is constant on I.

Theorem 11 Let f be a continuous function on an interval I. Let there exist finitely many points $x_{1}, x_{2}, \ldots x_{k} \in I$ such that f is differentiable on $I \backslash\left\{x_{1}, \ldots, x_{k}\right\}$.
(i) If $\forall x \in I \backslash\left\{x_{1}, \ldots, x_{k}\right\}: f^{\prime}(x)>0$, then f is increasing on I.
(ii) If $\forall x \in I \backslash\left\{x_{1}, \ldots, x_{k}\right\}: f^{\prime}(x) \geq 0$, then f is non-decreasing on I.
(iii) If $\forall x \in I \backslash\left\{x_{1}, \ldots, x_{k}\right\}: f^{\prime}(x)<0$, then f is decreasing on I.
(iv) If $\forall x \in I \backslash\left\{x_{1}, \ldots, x_{k}\right\}$: $f^{\prime}(x) \leq 0$, then f is non-increasing on I.

1.3.2 Local extrema

Definition 5 Let f be a function defined on an interval (a, b). We say that f has a
(i) local maximum at $x_{0} \in(a, b)$ if there exists $O\left(x_{0}\right)$ such that $\forall x \in O\left(x_{0}\right): f(x) \leq f\left(x_{0}\right)$,
(ii) strict local maximum at $x_{0} \in(a, b)$ if there exists $\mathcal{P}\left(x_{0}\right)$ such that $\forall x \in \mathcal{P}\left(x_{0}\right): f(x)<f\left(x_{0}\right)$,
(iii) local minimum at $x_{0} \in(a, b)$ if there exists $O\left(x_{0}\right)$ such that $\forall x \in O\left(x_{0}\right): f(x) \geq f\left(x_{0}\right)$,
(iv) strict local minimum at $x_{0} \in(a, b)$ if there exists $\mathcal{P}\left(x_{0}\right)$ such that $\forall x \in \mathcal{P}\left(x_{0}\right): f(x)>f\left(x_{0}\right)$.

Local maxima and minima of f are referred to as local extrema of f.
Theorem 12 Let f be a continuous function on an interval (a, b) and let $x_{0} \in(a, b)$.
(i) If $\exists \mathcal{P}\left(x_{0}\right)$ such that $\forall x \in \mathcal{P}^{-}\left(x_{0}\right): f^{\prime}(x)>0$ and $\forall x \in \mathcal{P}^{+}\left(x_{0}\right): f^{\prime}(x)<0$, then f has a strict local maximum at x_{0}.
(ii) If $\exists \mathcal{P}\left(x_{0}\right)$ such that $\forall x \in \mathcal{P}^{-}\left(x_{0}\right): f^{\prime}(x)<0$ and $\forall x \in \mathcal{P}^{+}\left(x_{0}\right): f^{\prime}(x)>0$, then f has a strict local minimum at x_{0}.
(iii) If $f^{\prime}\left(x_{0}\right) \neq 0$, then f does not have a local extremum at x_{0}.

Theorem 13 Let f be a function defined on an interval (a, b) and let $x_{0} \in(a, b)$.
(i) If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then f has a strict local minimum at x_{0}.
(ii) If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$, then f has a strict local maximum at x_{0}.

1.3.3 Global extrema

Definition 6 We say that a function f has a
(i) global maximum at $x_{0} \in D(f)$ if $\forall x \in D(f): f(x) \leq f\left(x_{0}\right)$.
(ii) global minimum at $x_{0} \in D(f)$ if $\forall x \in D(f): f(x) \geq f\left(x_{0}\right)$.

Note that a function does not need to have a global maximum and/or minimum.
Theorem 14 Let f be a continuous function defined on a closed interval $[a, b]$. Then f has a global maximum and a global minimum at a point of $[a, b]$.

1.3.4 Convexity and concavity

Definition 7 Let f be a continuous function on an interval I.
(i) If for any $x_{1}, x_{2}, x_{3} \in I$ such that $x_{1}<x_{2}<x_{3}$ it holds that the point $P_{2}=\left[x_{2}, f\left(x_{2}\right)\right]$ lies on or below the line joining the points $P_{1}=\left[x_{1}, f\left(x_{1}\right)\right]$ and $P_{3}=\left[x_{3}, f\left(x_{3}\right)\right]$, then we say that f is convex on I.
(ii) If for any $x_{1}, x_{2}, x_{3} \in I$ such that $x_{1}<x_{2}<x_{3}$ it holds that the point $P_{2}=\left[x_{2}, f\left(x_{2}\right)\right]$ lies on or above the line joining the points $P_{1}=\left[x_{1}, f\left(x_{1}\right)\right]$ and $P_{3}=\left[x_{3}, f\left(x_{3}\right)\right]$, then we say that f is concave on I.

Theorem 15 Let f be a function such that $f^{\prime \prime}$ is defined on an interval I (f has a second derivative on I).
(i) If $f^{\prime \prime}(x) \geq 0$ on I, then f is convex on I.
(ii) If $f^{\prime \prime}(x) \leq 0$ on I, then f is concave on I.

Definition 8 Let f be a function defined on (a, b) and let $x_{0} \in(a, b)$. If

- f is continuous on (a, b),
- f has a derivative at x_{0} (proper or improper),
- f is concave on $\left(a, x_{0}\right)$ and convex on $\left(x_{0}, b\right)$, or f is convex on $\left(a, x_{0}\right)$ and concave on $\left(x_{0}, b\right)$,
then we say that f has an inflection point at $\left(x_{0}, f\left(x_{0}\right)\right)$.
Theorem 16 Let a function f have a second derivative $f^{\prime \prime}$ on an interval (a, b).
(i) If there exists $\mathcal{P}\left(x_{0}\right)$ such that $\forall x \in \mathcal{P}^{-}\left(x_{0}\right): f^{\prime \prime}(x)>0$ and $\forall x \in \mathcal{P}^{+}\left(x_{0}\right): f^{\prime \prime}(x)<0$, or vice versa, then f has an inflection point at $\left(x_{0}, f\left(x_{0}\right)\right)$.
(ii) If $f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime \prime}\left(x_{0}\right) \neq 0$, then f has an inflection point at $\left(x_{0}, f\left(x_{0}\right)\right)$.

Remark 1 The points $x \in D(f)$ such that

- $f^{\prime}(x)=0$ are called stationary points,
- $f^{\prime}(x)=0$ or f^{\prime} is not defined at x are called critical points.

1.3.5 Asymptotes

Definition 9 Let f be a function.

- If there exists $a \in \mathbb{R}$ such that $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$, then the line given by the equation $x=a$ is called a vertical asymptote of the graph of f.
- If $\lim _{x \rightarrow \infty} f(x)=b \in \mathbb{R}$ or $\lim _{x \rightarrow-\infty} f(x)=b \in \mathbb{R}$, then the line given by the equation $y=b$ is called a horizontal asymptote of the graph of f at ∞ or $-\infty$, respectively.
- If $\lim _{x \rightarrow \infty}(f(x)-k x-q)=0$ or $\lim _{x \rightarrow-\infty}(f(x)-k x-q)=0$ for some $k, q \in \mathbb{R}$, then the line given by the equation $y=k x+q$ is called an oblique asymptote of the graph of f at ∞ or $-\infty$, respectively.

Theorem 17 The line $y=k x+q$ is an oblique asymptote of the graph of a function f at $\pm \infty$ if and only if

$$
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=k \in \mathbb{R} \quad \text { and } \quad \lim _{x \rightarrow \pm \infty}(f(x)-k x)=q \in \mathbb{R}
$$

1.3.6 Graphing functions

To sketch a graph of a function f one follows the steps:

1. determine $D(f)$, decide on properties as being periodic, even, odd
2. discuss continuity of f, compute limits (one-sided limits) at the endpoints of the domain and at the points of discontinuity of f
3. specify the asymptotes of the graph of f
4. compute $f^{\prime}(x)$ and based on it discuss monotonicity and local extrema of f
5. compute $f^{\prime \prime}(x)$ and based on it discuss convexity, concavity and inflection points of f
6. sketch the graph of f and determine $H(f)$

1.4 Newton's method - method of tangents

Newton's method is a method to approximate a root of a real-valued function f, i.e. to approximate a solution of the equation $f(x)=0$. To ensure the existence of a root and the convergence of its approximations (speed and monotonicity is of interest) one assumes f has certain properties. We will formulate Newton's method for a continuous and twice differentiable function f. These assumptions imply quadratic and monotone convergence of the method.

Proposition 1 Let f be a continuous function on an interval $[a, b]$ such that $f(a) f(b)<0$. Then $\exists c \in(a, b)$ such that $f(c)=0$ (such c is called a root of the equation $f(x)=0$).

Definition 10 We say an interval $[a, b]$ is a separation interval of an equation $f(x)=0$ if there exists a unique root α of this equation on $[a, b]$.

Theorem 18 (Newton's method)

Let f be a continuous function on an interval $[a, b]$ such that it has first and second derivative on $[a, b]$. Further, let us assume the interval $[a, b]$ is a separation interval of the equation $f(x)=0$, i.e. we assume:
(i) $f(a) f(b)<0$,
(ii) $\forall x \in[a, b]: f^{\prime}(x) \neq 0$.

For the approximations x_{n}, constructed below, of the root $\alpha \in[a, b]$ of $f(x)=0$ to converge monotonically to α we assume
(iii) $\forall x \in[a, b]: f^{\prime \prime}(x) \neq 0$.

Let us choose the 0 -th approximation of α as
(iv) $x_{0} \in[a, b]$ such that $f\left(x_{0}\right) f^{\prime \prime}\left(x_{0}\right)>0$
and let us construct a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}\left(x_{n}\right.$ is referred to as n-th approximation of $\left.\alpha\right)$ given by the following recursive formula:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Then

$$
\lim _{n \rightarrow \infty} x_{n}=\alpha
$$

1.5 Taylor polynomial

Definition 11 A function f of the form

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n},
$$

where $a_{i} \in \mathbb{R}$ for $i=0,1, \ldots n, a_{n} \neq 0$, is called a polynomial of degree n with constant coefficients. Note that $D(f)=\mathbb{R}$.

Definition 12 Let f be a function which has proper derivatives at a point x_{0} up to order $n \geq 1$. Then the polynomial

$$
T_{n}(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

is called the Taylor polynomial of degree n of f at x_{0} (or n-th order Taylor polynomial of f at x_{0}).
Proposition 2 For the Taylor polynomial $T_{n}(x)$ of a function f at a point x_{0} it holds that

$$
T_{n}\left(x_{0}\right)=f\left(x_{0}\right), T_{n}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right), \ldots, T_{n}^{(n)}\left(x_{0}\right)=f^{(n)}\left(x_{0}\right) .
$$

From the proposition above one can conclude that $f(x)$ and $T_{n}(x)$ have "similar behaviour" on a neighbourhood of x_{0}, i.e. $f(x) \doteq T_{n}(x)$ for $x \in O\left(x_{0}\right)$, which means that $T_{n}(x)$ approximates $f(x)$ close to x_{0}.

Theorem 19 (Taylor theorem)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which has at $x_{0} \in \mathbb{R}$ proper derivatives up to order $n \geq 1$. Then there exists a function $r: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)=T_{n}(x)+r(x)\left(x-x_{0}\right)^{n} \text { and } \lim _{x \rightarrow x_{0}} r(x)=0 .
$$

Taylor theorem describes the asymptotic behaviour of the remainder term

$$
R_{n}(x):=f(x)-T_{n}(x)=r(x)\left(x-x_{0}\right)^{n}
$$

which is the approximation error when approximating f with its Taylor polynomial. Under stronger regularity assumptions on f there are several precise formulae for the remainder term R_{n} of the Taylor polynomial, one of the most common ones is the Lagrange form of the remainder specified in the following theorem.

Theorem 20 Let f be a $n+1$ times differentiable function on an interval I and let $T_{n}(x)$ be the Taylor polynomial of f at $x_{0} \in I$. Then

$$
\forall x \in I \exists c \in\left(x, x_{0}\right)\left(\text { or } c \in\left(x_{0}, x\right)\right): \quad R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1},
$$

i.e.

$$
f(x)=T_{n}(x)+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
$$

The last equality is called the Taylor formula.

1.6 Differential of a function

Definition 13

(i) The difference of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ of a single real variable x is the function Δf of two independent real variables x and Δx given by

$$
\Delta f(x, \Delta x)=f(x+\Delta x)-f(x) .
$$

(ii) The differential of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ of a single real variable x is the function $\mathrm{d} f$ of two independent real variables x and Δx given by

$$
\mathrm{d} f(x, \Delta x)=f^{\prime}(x) \Delta x .
$$

Remark 2

(i) Instead of $\mathrm{d} f(x, \Delta x)$ one can write $\mathrm{d} f(x)$.
(ii) Since $\mathrm{d} x(x, \Delta x)=1 \Delta x$, it is conventional to write $\Delta x=\mathrm{d} x$. Hence $\mathrm{d} f(x)=f^{\prime}(x) \mathrm{d} x$.
(iii) Note that from the Taylor formula it follows that $\Delta f(x, \Delta x)=\mathrm{d} f(x, \Delta x)+R_{1}(x)$. Thus, $\mathrm{d} f(x, \Delta x)$ approximates $\Delta f(x, \Delta x)$ and one can say that the differential is a linear approximation to the increment of a function.

