Handouts - week 2

1 Continuity and limits of functions

Terminology: Consider an arbitrary $a \in \mathbb{R}$ and an arbitrary $\varepsilon>0$.

- The open interval $(a-\varepsilon, a+\varepsilon)$ is called the ε-neighbourhood of the point a. We denote it by $O_{\varepsilon}(a)$.
- The intervals $O_{\varepsilon}^{+}(a)=[a, a+\varepsilon)$ and $O_{\varepsilon}^{-}(a)=(a-\varepsilon, a]$ are referred to as a right and a left ε-neighbourhood of a, respectively.
- Neighbourhoods of the point a from which a itself is excluded are called punctured (sometimes deleted). Namely, $\mathcal{P}_{\varepsilon}(a)=O_{\varepsilon}(a) \backslash\{a\}$ denotes the punctured ε-neighbourhood of $a, \mathcal{P}_{\varepsilon}^{+}(a)=(a, a+\varepsilon)$ denotes the punctured right ε-neighbourhood of a and $P_{\varepsilon}^{-}(a)=(a-\varepsilon, a)$ denotes the punctured left ε-neighbourhood of a.
- If x takes values arbitrarily close to a, we say x approaches a (or x tends to a) and we write $x \rightarrow a$. Similarly one defines the notation $x \rightarrow a+, x \rightarrow a-, x \rightarrow+\infty, x \rightarrow-\infty$.

1.1 Continuity of a function

Definition 1 Let f be a real function of one real variable defined in a neighbourhood of a. We say that f is continuous at $a \in D(f)$ if

$$
\forall O_{\varepsilon}(f(a)) \exists O_{\delta}(a): \quad f\left(O_{\delta}(a)\right) \subseteq O_{\varepsilon}(f(a))
$$

Equivalently,

$$
\forall \varepsilon>0 \exists \delta>0:|x-a|<\delta \Rightarrow|f(x)-f(a)|<\varepsilon
$$

Definition 2 We say that f is continuous on an open interval (a, b) if it is continuous at each point of (a, b).
Definition 3 We say that a function f is

- continuous from the right (right-hand side continuous) at a point $a \in D(f)$ if

$$
\forall O_{\varepsilon}(f(a)) \exists O_{\delta}^{+}(a): \quad f\left(O_{\delta}^{+}(a)\right) \subseteq O_{\varepsilon}(f(a))
$$

- continuous from the left (left-hand side continuous) at a point $a \in D(f)$ if

$$
\forall O_{\varepsilon}(f(a)) \exists O_{\delta}^{-}(a): \quad f\left(O_{\delta}^{-}(a)\right) \subseteq O_{\varepsilon}(f(a))
$$

Definition 4 We say that a function f is continuous on a closed interval $[a, b]$ if it is

- continuous at each point of (a, b),
- continuous from the right at the point a,
- continuous from the left at the point b.

Theorem 1 Let $a \in \mathbb{R}$ and let f and g be functions continuous at a. Then the functions $|f|, f \pm g, f \cdot g$ are continuous at a. Further, if $g(a) \neq 0$ then $\frac{f}{g}$ is continuous at a.

Theorem 2 If a function $y=f(x)$ is continuous at a point $x=a$ and a function $z=g(y)$ is continuous at the point $y=f(a)$, then the composition $(g \circ f)(x)$ is continuous at point $x=a$.

1.2 Limit of a function

Definition 5 Let $a \in \mathbb{R}$ and let $f: D(f) \rightarrow \mathbb{R}$ be a function defined in a punctured neighbourhood of a. We say that the limit of the function $f(x)$ as x approaches a is equal to $A \in \mathbb{R}$ (or that the function f has the limit A at a) and we write $\lim _{x \rightarrow a} f(x)=A$ if

$$
\forall O_{\varepsilon}(A) \exists \mathcal{P}_{\delta}(a): \quad f\left(\mathscr{P}_{\delta}(a)\right) \subset O_{\varepsilon}(A)
$$

or equivalently

$$
\forall \varepsilon>0 \exists \delta>0: \quad 0<|x-a|<\delta \Rightarrow|f(x)-A|<\varepsilon
$$

Theorem 3 A function has at a given point at most one limit.
The following theorems are useful for calculating the limits:
Theorem 4 Function f is continuous at a point $a \in D(f)$ if and only if $\lim _{x \rightarrow a} f(x)=f(a)$.

Theorem 5 Let $f: D(f) \rightarrow \mathbb{R}, g: D(g) \rightarrow \mathbb{R}, a \in \mathbb{R}$. Then

$$
\exists \mathcal{P}(a):(\forall x \in \mathcal{P}(a): f(x)=g(x)) \Rightarrow \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)
$$

Theorem 6 (so-called Squeeze or Sandwich theorem) Let the following conditions hold:

- $\forall x \in \mathcal{P}(a): g(x) \leq f(x) \leq h(x)$,
- $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)$,
then there exists $\lim _{x \rightarrow a} f(x)$ and it equals $\lim _{x \rightarrow a} g(x)$.
Theorem 7 Let $\lim _{x \rightarrow a} f(x)=A \in \mathbb{R}$ and let $\lim _{x \rightarrow a} g(x)=B \in \mathbb{R}$. Then
(i) $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)=A \pm B$,
(ii) $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=A \cdot B$,
(iii) if $B \neq 0$ then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\left(\lim _{x \rightarrow a} f(x)\right) /\left(\lim _{x \rightarrow a} g(x)\right)=\frac{A}{B}$.

Theorem 8 Let $\lim _{x \rightarrow a} g(x)=A \in \mathbb{R}$ and let f be a function continuous at A. Then

$$
\lim _{x \rightarrow a} f(g(x))=f(A)
$$

Remark $1 \lim _{x \rightarrow a}[f(x)]^{g(x)}=\lim _{x \rightarrow a} \mathrm{e}^{g(x) \ln f(x)}$

1.3 One-sided limits of a function

Definition 6 Let $a \in \mathbb{R}$ and let $f: D(f) \rightarrow \mathbb{R}$ be such that a punctured right neighbourhood of a is contained in $D(f)$. We say that f has the right-sided $\operatorname{limit} A \in \mathbb{R}$ at the point $a\left(\lim _{x \rightarrow a+} f(x)=A\right)$ if

$$
\forall O_{\varepsilon}(A) \exists \mathscr{P}_{\delta}^{+}(a): \quad f\left(\mathscr{P}_{\delta}^{+}(a)\right) \subset O_{\varepsilon}(A)
$$

Definition 7 Let $a \in \mathbb{R}$ and let $f: D(f) \rightarrow \mathbb{R}$ be such that a punctured left neighbourhood of a is contained in $D(f)$. We say that f has the left-sided limit $A \in \mathbb{R}$ at the point $a\left(\lim _{x \rightarrow a-} f(x)=A\right)$ if

$$
\forall O_{\varepsilon}(A) \exists \mathscr{P}_{\delta}^{-}(a): \quad f\left(\mathcal{P}_{\delta}^{-}(a)\right) \subset O_{\varepsilon}(A)
$$

Theorem $9 \lim _{x \rightarrow a} f(x)$ exists if and only if $\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)$. Then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)
$$

The theorems stated above for two-sided limits hold for one-sided limits as well.

Theorem 10 Let $f: D(f) \rightarrow \mathbb{R}, g: D(g) \rightarrow \mathbb{R}, a \in \mathbb{R}$.
(i) f has at a at most one left-sided (right-sided) limit.
(ii) f is left-hand (right-hand) side continuous at a if and only if $\lim _{x \rightarrow a-} f(x)=f(a)\left(\lim _{x \rightarrow a+} f(x)=f(a)\right)$.
(iii) If $f=g$ on a punctured left(right) neighbourhood of a, then $\lim _{x \rightarrow a-} f(x)=\lim _{x \rightarrow a-} g(x)\left(\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a+} g(x)\right)$.
(iv) Squeeze theorem:

If $\forall x \in \mathcal{P}^{ \pm}(a): g(x) \leq f(x) \leq h(x)$ and $\lim _{x \rightarrow a \pm} g(x)=\lim _{x \rightarrow a \pm} h(x)$, then $\lim _{x \rightarrow a \pm} f(x)=\lim _{x \rightarrow a \pm} g(x)$.
(v) $\lim _{x \rightarrow a \pm}(f(x) \pm g(x))=\lim _{x \rightarrow a \pm} f(x) \pm \lim _{x \rightarrow a \pm} g(x)$
(vi) $\lim _{x \rightarrow a \pm} \frac{f(x)}{g(x)}=\left(\lim _{x \rightarrow a \pm} f(x)\right) /\left(\lim _{x \rightarrow a \pm} g(x)\right)$ if $\lim _{x \rightarrow a \pm} g(x) \neq 0$
(vii) If $\lim _{x \rightarrow a \pm} g(x)=A \in \mathbb{R}$ and f is left-hand (right-hand) side continuous at A, then $\lim _{x \rightarrow a \pm} f(g(x))=f(A)$.

1.4 Limits involving infinity

Till now we have studied the limits $\lim _{x \rightarrow a} f(x)=L$, where $a, L \in \mathbb{R}$. Such limits are referred to as the proper limits at proper points. If $a= \pm \infty$, one considers the limits at plus/minus infinity. One can refer to them as limits at improper points. If $L= \pm \infty$, one says that the function $f(x)$ diverges at a. One calls such limits improper.

Definitions of improper limits of functions at proper/improper points are identical to the definition of proper limits of functions at proper points. However, one needs to recall that open (punctured) neighbourhoods of $-\infty$ are open intervals $(-\infty, a), a \in \mathbb{R} \cup\{\infty\}$ and that open (punctured) neighbourhoods of ∞ are open intervals $(a, \infty), a \in \mathbb{R} \cup\{-\infty\}$. To make it clear we state the respective definitions below.

Definition 8 Improper limits at proper points
Let a function f be defined on a neighbourhood $\mathcal{P}(a)$ of $a \in \mathbb{R}$. Then
(i) $\lim _{x \rightarrow a} f(x)=\infty$ if $\forall K>0 \exists \mathscr{P}_{\delta}(a) \forall x \in \mathcal{P}_{\delta}(a): f(x)>K$,
(ii) $\lim _{x \rightarrow a} f(x)=-\infty$ if $\forall L<0 \exists \mathcal{P}_{\delta}(a) \forall x \in \mathcal{P}_{\delta}(a): f(x)<L$.

Remark 2 By considering $\mathcal{P}_{\delta}^{+}(a)$ or $\mathcal{P}_{\delta}^{-}(a)$ instead of $\mathcal{P}_{\delta}(a)$ in Definition 8, one defines the respective onesided improper limits at proper points.

Definition 9 Proper limits at improper points
(i) Let $a \in \mathbb{R} \cup\{-\infty\}$ and let f be a function such that $(a, \infty) \subseteq D(f)$. We say that f has the proper limit $L \in \mathbb{R}$ at ∞ and write $\lim _{x \rightarrow \infty} f(x)=L$ if $\forall O_{\varepsilon}(L) \exists b>0 \forall x>b: f(x) \in O_{\varepsilon}(L)$.
(ii) Let $a \in \mathbb{R} \cup\{\infty\}$ and let f be a function such that $(-\infty, a) \subseteq D(f)$. We say that f has the proper limit L at $-\infty$ and write $\lim _{x \rightarrow-\infty} f(x)=L \in \mathbb{R}$ if $\forall O_{\varepsilon}(L) \exists b<0 \forall x<b: f(x) \in O_{\varepsilon}(L)$.

Definition 10 Improper limits at improper points
(i) Let $a \in \mathbb{R} \cup\{+\infty\}$ and let f be a function such that $(-\infty, a) \subseteq D(f)$. We say that f has the improper limit $+\infty$ at $-\infty$ and write $\lim _{x \rightarrow-\infty} f(x)=\infty$ if $\forall K>0 \exists b<0 \forall x<b: f(x)>K$.
(ii) Let $a \in \mathbb{R} \cup\{+\infty\}$ and let f be a function such that $(-\infty, a) \subseteq D(f)$. We say that f has the improper limit $-\infty$ at $-\infty$ and write $\lim _{x \rightarrow-\infty} f(x)=-\infty$ if $\forall L<0 \exists b<0 \forall x<b: f(x)<L$.
(iii) Let $a \in \mathbb{R} \cup\{-\infty\}$ and let f be a function such that $(a, \infty) \subseteq D(f)$. We say that f has the improper limit $+\infty$ at $+\infty$ and write $\lim _{x \rightarrow \infty} f(x)=\infty$ if $\forall K>0 \exists b>0 \forall x>b: f(x)>K$.
(iv) Let $a \in \mathbb{R} \cup\{-\infty\}$ and let f be a function such that $(a, \infty) \subseteq D(f)$. We say that f has the improper limit $-\infty$ at $+\infty$ and write $\lim _{x \rightarrow \infty} f(x)=-\infty$ if $\forall L<0 \exists b>0 \forall x>b: f(x)<L$.

The following theorems are useful for calculating (im)proper limits of functions at (im)proper points.
Theorem 11 Let a function f be defined on a neighbourhood $\mathcal{P}(a)$ of $a \in \mathbb{R}$. Then
(i) $\lim _{x \rightarrow a} f(x)=\infty \quad \Leftrightarrow \quad \lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)=\infty$
(ii) $\lim _{x \rightarrow a} f(x)=-\infty \quad \Leftrightarrow \quad \lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)=-\infty$

Theorem 12 Let f and g be functions such that $f=g$ on a neighbourhood $\mathcal{P}(a)$ of $a \in \mathbb{R} \cup\{+\infty,-\infty\}$. Then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

Theorem 13 Let $\lim _{x \rightarrow \pm \infty} f(x)=A \in \mathbb{R}$ and $\lim _{x \rightarrow \pm \infty} g(x)=B \in \mathbb{R}$. Then
(i) $\lim _{x \rightarrow \pm \infty}(f(x) \pm g(x))=\lim _{x \rightarrow \pm \infty} f(x) \pm \lim _{x \rightarrow \pm \infty} g(x)=A \pm B$,
(ii) $\lim _{x \rightarrow \pm \infty}(f(x) \cdot g(x))=\lim _{x \rightarrow \pm \infty} f(x) \cdot \lim _{x \rightarrow \pm \infty} g(x)=A \cdot B$,
(iii) if $B \neq 0$, then $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow \pm \infty} f(x)}{\lim _{x \rightarrow \pm \infty} g(x)}=\frac{A}{B}$.

Theorem 14 Consider functions f and g defined on a neighbourhood $\mathcal{P}(a)$ of $a \in \mathbb{R} \cup\{+\infty,-\infty\}$.
(i) If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$, then $\lim _{x \rightarrow a}(f(x)+g(x))=\infty$ and $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\infty$.
(ii) If $\lim _{x \rightarrow a} f(x)=-\infty$ and $\lim _{x \rightarrow a} g(x)=-\infty$, then $\lim _{x \rightarrow a}(f(x)+g(x))=-\infty$ and $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\infty$.
(iii) If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=-\infty$, then $\lim _{x \rightarrow a}(f(x) \cdot g(x))=-\infty$.
(iv) If $\lim _{x \rightarrow a} f(x)=A \in \mathbb{R}, A>0$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$, then $\lim _{x \rightarrow a}(f(x) \cdot g(x))= \pm \infty$.
(v) If $\lim _{x \rightarrow a} f(x)=A \in \mathbb{R}$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=0$.

The rules to calculate limits according to Theorem 14 can be easily remembered in the following form:

$\infty+\infty=\infty$	$-\infty \cdot \infty=-\infty$
$\infty \cdot \infty=\infty$	$A \cdot \infty=\infty$ when $A>0$
$-\infty+(-\infty)=-\infty$	$A \cdot(-\infty)=-\infty$ when $A>0$
$-\infty \cdot(-\infty)=\infty$	$\frac{A}{ \pm \infty}=0$ when $A \in \mathbb{R}$

Theorem 15 Let f be a function bounded on a neighbourhood $P(a)$ of $a \in \mathbb{R} \cup\{+\infty,-\infty\}$. Then the following holds:
(i) if $\lim _{x \rightarrow a} g(x)= \pm \infty$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=0$,
(ii) if $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} f(x) g(x)=0$.

Theorem 16 Consider functions f and g defined on a neighbourhood $\mathcal{P}(a)$ of $a \in \mathbb{R} \cup\{+\infty,-\infty\}$. Let $\lim _{x \rightarrow a} f(x)=$ $A>0$ and let $\lim _{x \rightarrow a} g(x)=0$.
(i) If $g(x)>0$ on $\mathcal{P}(a)$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=+\infty$.
(ii) If $g(x)<0$ on $\mathcal{P}(a)$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=-\infty$.
(iii) If the function g takes positive and negative values on every neighbourhood $P(a)$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ does not exist.

Mnemonics for Theorem 16:

$$
\begin{array}{|l|l|}
\hline \frac{A}{0_{+}}=+\infty \text { when } A>0 & \frac{A}{0_{-}}=-\infty \text { when } A>0 \\
\hline
\end{array}
$$

Theorem 17 Squeeze or Sandwich theorem:
Let $a \in \mathbb{R} \cup\{+\infty,-\infty\}$ and let the functions f, g, h be defined on a neighbourhood $\mathcal{P}(a)$.

- If $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L \in \mathbb{R}$ and $\forall x \in \mathcal{P}(a): g(x) \leq f(x) \leq h(x)$, then $\lim _{x \rightarrow a} f(x)=L$.
- If $\lim _{x \rightarrow a} g(x)=\infty$ and $\forall x \in \mathcal{P}(a): g(x) \leq f(x)$, then $\lim _{x \rightarrow a} f(x)=\infty$.
- If $\lim _{x \rightarrow a} h(x)=-\infty$ and $\forall x \in \mathcal{P}(a): f(x) \leq h(x)$, then $\lim _{x \rightarrow a} f(x)=-\infty$.

Note that the following expressions are indefinite, they depend on instances.

$\infty-\infty$	$0 \cdot \infty$	$\frac{\infty}{\infty}$	$\frac{0}{0}$	1^{∞}	0^{0}	∞^{0}

1.5 Limits of sequencies

Definition 11 We define a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ to be a function whose domain is a subset of \mathbb{N} (or more generally of \mathbb{Z}) and whose codomain is \mathbb{R}. Namely, $\left\{a_{n}\right\}_{n=1}^{\infty}: n \in \mathbb{N} \mapsto a_{n} \in \mathbb{R}$. The values a_{n} are called the elements (or terms, members) of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}, n$ is called the index of the element a_{n}.

Examples:
Arithmetic sequence: $a_{n}=a_{1}+(n-1) d$, where $n \in \mathbb{N}$ and $d \in \mathbb{R}$ is a common difference
Geometric sequence: $a_{n}=a_{1} \cdot q^{n-1}$, where $n \in \mathbb{N}$ and $q \in \mathbb{R} \backslash\{0\}$ is a common ratio (or quotient)
Definition 12 We say that a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ has a limit A, i.e. $\lim _{n \rightarrow \infty} a_{n}=A$, if

- in case $A \in \mathbb{R}: \forall O_{\varepsilon}(A) \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: a_{n} \in O_{\varepsilon}(A)$,
- in case $A=+\infty: \forall K>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: a_{n}>K$,
- in case $A=-\infty: \forall L<0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: a_{n}<L$.

A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is called convergent if it has a proper limit, i.e. $\lim _{n \rightarrow \infty} a_{n} \in \mathbb{R}$.
A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is called divergent if $\lim _{n \rightarrow \infty} a_{n}= \pm \infty$ or if $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
Definition 13 Consider a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$.
(i) If $\forall n \in \mathbb{N}: a_{n}<a_{n+1}$, we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is increasing.
(ii) If $\forall n \in \mathbb{N}: a_{n} \leq a_{n+1}$, we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is non-decreasing.
(iii) If $\forall n \in \mathbb{N}: a_{n}>a_{n+1}$, we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is decreasing.
(iv) If $\forall n \in \mathbb{N}: a_{n} \geq a_{n+1}$, we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is non-increasing.

Theorem 18 A decreasing or non-increasing sequence is bounded above. An increasing or non-decreasing sequence is bounded below.

Theorem 19 A monotone sequence has always limit. If the sequence is bounded, then the limit is proper.
Remark 3 One can prove that there exists a limit of the sequence $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$. This limit is used to define Euler's number e.

