Handouts - week 2

1 Continuity and limits of functions

Terminology: Consider an arbitrary $a \in \mathbb{R}$ and an arbitrary $\varepsilon > 0$.

- The open interval $(a \varepsilon, a + \varepsilon)$ is called the ε -neighbourhood of the point a. We denote it by $O_{\varepsilon}(a)$.
- The intervals $\mathcal{O}_{\varepsilon}^+(a) = [a, a+\varepsilon)$ and $\mathcal{O}_{\varepsilon}^-(a) = (a-\varepsilon, a]$ are referred to as a *right* and a *left* ε -*neighbourhood* of a, respectively.
- Neighbourhoods of the point *a* from which *a* itself is excluded are called *punctured* (sometimes *deleted*). Namely, *P*_ε(*a*) = *O*_ε(*a*) \ {*a*} denotes the *punctured* ε-*neighbourhood* of *a*, *P*⁺_ε(*a*) = (*a*, *a*+ε) denotes the *punctured* right ε-*neighbourhood* of *a* and *P*⁻_ε(*a*) = (*a*-ε, *a*) denotes the *punctured* left ε-*neighbourhood* of *a*.
- If x takes values arbitrarily close to a, we say x approaches a (or x tends to a) and we write $x \to a$. Similarly one defines the notation $x \to a+, x \to a-, x \to +\infty, x \to -\infty$.

1.1 Continuity of a function

Definition 1 Let f be a real function of one real variable defined in a neighbourhood of a. We say that f is continuous at $a \in D(f)$ if

$$\forall \mathcal{O}_{\varepsilon}(f(a)) \exists \mathcal{O}_{\delta}(a) : f(\mathcal{O}_{\delta}(a)) \subseteq \mathcal{O}_{\varepsilon}(f(a)).$$

Equivalently,

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Definition 2 We say that f is continuous on an open interval (a,b) if it is continuous at each point of (a,b).

Definition 3 We say that a function f is

• continuous from the right (right-hand side continuous) at a point $a \in D(f)$ if

$$\forall \mathcal{O}_{\varepsilon}(f(a)) \exists \mathcal{O}_{\delta}^{+}(a) : f(\mathcal{O}_{\delta}^{+}(a)) \subseteq \mathcal{O}_{\varepsilon}(f(a)),$$

• continuous from the left (left-hand side continuous) at a point $a \in D(f)$ if

$$\forall \mathcal{O}_{\varepsilon}(f(a)) \exists \mathcal{O}_{\delta}^{-}(a) : f(\mathcal{O}_{\delta}^{-}(a)) \subseteq \mathcal{O}_{\varepsilon}(f(a)).$$

Definition 4 We say that a function f is continuous on a closed interval [a,b] if it is

- *continuous at each point of* (*a*,*b*),
- continuous from the right at the point a,
- continuous from the left at the point b.

Theorem 1 Let $a \in \mathbb{R}$ and let f and g be functions continuous at a. Then the functions |f|, $f \pm g$, $f \cdot g$ are continuous at a. Further, if $g(a) \neq 0$ then $\frac{f}{g}$ is continuous at a.

Theorem 2 If a function y = f(x) is continuous at a point x = a and a function z = g(y) is continuous at the point y = f(a), then the composition $(g \circ f)(x)$ is continuous at point x = a.

1.2 Limit of a function

Definition 5 Let $a \in \mathbb{R}$ and let $f : D(f) \to \mathbb{R}$ be a function defined in a punctured neighbourhood of a. We say that the limit of the function f(x) as x approaches a is equal to $A \in \mathbb{R}$ (or that the function f has the limit A at a) and we write $\lim_{x\to a} f(x) = A$ if

$$\forall O_{\varepsilon}(A) \exists \mathcal{P}_{\delta}(a) : f(\mathcal{P}_{\delta}(a)) \subset O_{\varepsilon}(A)$$

or equivalently

$$\forall \varepsilon > 0 \ \exists \delta > 0 : 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon$$

Theorem 3 A function has at a given point at most one limit.

The following theorems are useful for calculating the limits:

Theorem 4 Function f is continuous at a point $a \in D(f)$ if and only if $\lim_{x \to a} f(x) = f(a)$.

Theorem 5 Let $f : D(f) \to \mathbb{R}$, $g : D(g) \to \mathbb{R}$, $a \in \mathbb{R}$. Then

$$\exists \mathcal{P}(a): \ (\forall x \in \mathcal{P}(a): \ f(x) = g(x)) \Rightarrow \lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$

Theorem 6 (so-called Squeeze or Sandwich theorem) Let the following conditions hold:

- $\forall x \in \mathcal{P}(a) : g(x) \le f(x) \le h(x),$
- $\lim_{x \to a} g(x) = \lim_{x \to a} h(x),$

then there exists $\lim_{x \to a} f(x)$ and it equals $\lim_{x \to a} g(x)$.

Theorem 7 Let $\lim_{x \to a} f(x) = A \in \mathbb{R}$ and let $\lim_{x \to a} g(x) = B \in \mathbb{R}$. Then

(i)
$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = A \pm B$$

(*ii*) $\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = A \cdot B,$

(iii) if $B \neq 0$ then $\lim_{x \to a} \frac{f(x)}{g(x)} = (\lim_{x \to a} f(x)) / (\lim_{x \to a} g(x)) = \frac{A}{B}$.

Theorem 8 Let $\lim_{x \to a} g(x) = A \in \mathbb{R}$ and let *f* be a function continuous at *A*. Then

$$\lim_{x \to a} f(g(x)) = f(A).$$

Remark 1 $\lim_{x \to a} [f(x)]^{g(x)} = \lim_{x \to a} e^{g(x) \ln f(x)}$

1.3 One-sided limits of a function

Definition 6 Let $a \in \mathbb{R}$ and let $f : D(f) \to \mathbb{R}$ be such that a punctured right neighbourhood of a is contained in D(f). We say that f has the right-sided limit $A \in \mathbb{R}$ at the point $a(\lim_{x \to a^+} f(x) = A)$ if

$$\forall \mathcal{O}_{\varepsilon}(A) \exists \mathcal{P}^+_{\delta}(a) : f(\mathcal{P}^+_{\delta}(a)) \subset \mathcal{O}_{\varepsilon}(A).$$

Definition 7 Let $a \in \mathbb{R}$ and let $f : D(f) \to \mathbb{R}$ be such that a punctured left neighbourhood of a is contained in D(f). We say that f has the left-sided limit $A \in \mathbb{R}$ at the point $a(\lim_{x \to a_-} f(x) = A)$ if

$$\forall \mathcal{O}_{\varepsilon}(A) \exists \mathcal{P}_{\delta}^{-}(a) : f(\mathcal{P}_{\delta}^{-}(a)) \subset \mathcal{O}_{\varepsilon}(A)$$

Theorem 9 $\lim_{x \to a} f(x)$ exists if and only if $\lim_{x \to a+} f(x) = \lim_{x \to a-} f(x)$. Then

$$\lim_{x \to a} f(x) = \lim_{x \to a+} f(x) = \lim_{x \to a-} f(x).$$

The theorems stated above for two-sided limits hold for one-sided limits as well.

Theorem 10 Let $f : D(f) \to \mathbb{R}$, $g : D(g) \to \mathbb{R}$, $a \in \mathbb{R}$.

- (i) f has at a at most one left-sided (right-sided) limit.
- (ii) f is left-hand (right-hand) side continuous at a if and only if $\lim_{x\to a^-} f(x) = f(a)$ ($\lim_{x\to a^+} f(x) = f(a)$).
- (iii) If f = g on a punctured left (right) neighbourhood of a, then $\lim_{x \to a^-} f(x) = \lim_{x \to a^-} g(x) (\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x))$.
- (iv) Squeeze theorem: If $\forall x \in \mathcal{P}^{\pm}(a) : g(x) \leq f(x) \leq h(x)$ and $\lim_{x \to a\pm} g(x) = \lim_{x \to a\pm} h(x)$, then $\lim_{x \to a\pm} f(x) = \lim_{x \to a\pm} g(x)$.

(v)
$$\lim_{x \to a\pm} (f(x) \pm g(x)) = \lim_{x \to a\pm} f(x) \pm \lim_{x \to a\pm} g(x)$$

- (vi) $\lim_{x \to a\pm} \frac{f(x)}{g(x)} = (\lim_{x \to a\pm} f(x)) / (\lim_{x \to a\pm} g(x)) \text{ if } \lim_{x \to a\pm} g(x) \neq 0$
- (vii) If $\lim_{x \to a^+} g(x) = A \in \mathbb{R}$ and f is left-hand (right-hand) side continuous at A, then $\lim_{x \to a^+} f(g(x)) = f(A)$.

1.4 Limits involving infinity

Till now we have studied the limits $\lim_{x\to a} f(x) = L$, where $a, L \in \mathbb{R}$. Such limits are referred to as the *proper limits at proper points*. If $a = \pm \infty$, one considers the limits at plus/minus infinity. One can refer to them as *limits at improper points*. If $L = \pm \infty$, one says that the function f(x) *diverges* at *a*. One calls such limits *improper*.

Definitions of improper limits of functions at proper/improper points are identical to the definition of proper limits of functions at proper points. However, one needs to recall that open (punctured) neighbourhoods of $-\infty$ are open intervals $(-\infty, a), a \in \mathbb{R} \cup \{\infty\}$ and that open (punctured) neighbourhoods of ∞ are open intervals $(a, \infty), a \in \mathbb{R} \cup \{-\infty\}$. To make it clear we state the respective definitions below.

Definition 8 *Improper limits at proper points* Let a function f be defined on a neighbourhood $\mathcal{P}(a)$ of $a \in \mathbb{R}$. Then

- (i) $\lim_{x \to a} f(x) = \infty$ if $\forall K > 0 \exists \mathcal{P}_{\delta}(a) \ \forall x \in \mathcal{P}_{\delta}(a) : f(x) > K$,
- (*ii*) $\lim_{x \to a} f(x) = -\infty$ if $\forall L < 0 \exists \mathcal{P}_{\delta}(a) \ \forall x \in \mathcal{P}_{\delta}(a) : f(x) < L$.

Remark 2 By considering $\mathcal{P}^+_{\delta}(a)$ or $\mathcal{P}^-_{\delta}(a)$ instead of $\mathcal{P}_{\delta}(a)$ in Definition 8, one defines the respective onesided improper limits at proper points.

Definition 9 Proper limits at improper points

- (i) Let $a \in \mathbb{R} \cup \{-\infty\}$ and let f be a function such that $(a,\infty) \subseteq D(f)$. We say that f has the proper limit $L \in \mathbb{R}$ at ∞ and write $\lim_{x \to \infty} f(x) = L$ if $\forall O_{\varepsilon}(L) \exists b > 0 \ \forall x > b : f(x) \in O_{\varepsilon}(L)$.
- (ii) Let $a \in \mathbb{R} \cup \{\infty\}$ and let f be a function such that $(-\infty, a) \subseteq D(f)$. We say that f has the proper limit L $at -\infty$ and write $\lim_{x \to -\infty} f(x) = L \in \mathbb{R}$ if $\forall O_{\varepsilon}(L) \exists b < 0 \ \forall x < b : f(x) \in O_{\varepsilon}(L)$.

Definition 10 Improper limits at improper points

(*i*) Let $a \in \mathbb{R} \cup \{+\infty\}$ and let f be a function such that $(-\infty, a) \subseteq D(f)$. We say that f has the improper limit $+\infty$ at $-\infty$ and write $\lim_{x \to -\infty} f(x) = \infty$ if $\forall K > 0 \exists b < 0 \forall x < b : f(x) > K$.

- (ii) Let $a \in \mathbb{R} \cup \{+\infty\}$ and let f be a function such that $(-\infty, a) \subseteq D(f)$. We say that f has the improper limit $-\infty$ at $-\infty$ and write $\lim_{x \to -\infty} f(x) = -\infty$ if $\forall L < 0 \exists b < 0 \forall x < b : f(x) < L$.
- (iii) Let $a \in \mathbb{R} \cup \{-\infty\}$ and let f be a function such that $(a,\infty) \subseteq D(f)$. We say that f has the improper limit $+\infty$ at $+\infty$ and write $\lim_{x \to \infty} f(x) = \infty$ if $\forall K > 0 \exists b > 0 \forall x > b : f(x) > K$.
- (iv) Let $a \in \mathbb{R} \cup \{-\infty\}$ and let f be a function such that $(a,\infty) \subseteq D(f)$. We say that f has the improper limit $-\infty at +\infty$ and write $\lim_{x \to \infty} f(x) = -\infty$ if $\forall L < 0 \exists b > 0 \forall x > b : f(x) < L$.

The following theorems are useful for calculating (im)proper limits of functions at (im)proper points.

Theorem 11 Let a function f be defined on a neighbourhood $\mathcal{P}(a)$ of $a \in \mathbb{R}$. Then

- (i) $\lim_{x \to a} f(x) = \infty \quad \Leftrightarrow \quad \lim_{x \to a+} f(x) = \lim_{x \to a-} f(x) = \infty$
- (*ii*) $\lim_{x \to a} f(x) = -\infty \quad \Leftrightarrow \quad \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = -\infty$

Theorem 12 Let f and g be functions such that f = g on a neighbourhood $\mathcal{P}(a)$ of $a \in \mathbb{R} \cup \{+\infty, -\infty\}$. Then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$.

Theorem 13 Let $\lim_{x \to \pm \infty} f(x) = A \in \mathbb{R}$ and $\lim_{x \to \pm \infty} g(x) = B \in \mathbb{R}$. Then

- (i) $\lim_{x \to \pm \infty} (f(x) \pm g(x)) = \lim_{x \to \pm \infty} f(x) \pm \lim_{x \to \pm \infty} g(x) = A \pm B$,
- (*ii*) $\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = \lim_{x \to \pm \infty} f(x) \cdot \lim_{x \to \pm \infty} g(x) = A \cdot B$,
- (iii) if $B \neq 0$, then $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \pm \infty} f(x)}{\lim_{x \to \pm \infty} g(x)} = \frac{A}{B}$.

Theorem 14 Consider functions f and g defined on a neighbourhood $\mathcal{P}(a)$ of $a \in \mathbb{R} \cup \{+\infty, -\infty\}$.

(i) If $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = \infty$, then $\lim_{x \to a} (f(x) + g(x)) = \infty$ and $\lim_{x \to a} (f(x) \cdot g(x)) = \infty$.

(ii) If
$$\lim_{x \to a} f(x) = -\infty$$
 and $\lim_{x \to a} g(x) = -\infty$, then $\lim_{x \to a} (f(x) + g(x)) = -\infty$ and $\lim_{x \to a} (f(x) \cdot g(x)) = \infty$.

- (iii) If $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = -\infty$, then $\lim_{x \to a} (f(x) \cdot g(x)) = -\infty$.
- (iv) If $\lim_{x \to a} f(x) = A \in \mathbb{R}, A > 0$ and $\lim_{x \to a} g(x) = \pm \infty$, then $\lim_{x \to a} (f(x) \cdot g(x)) = \pm \infty$.

(v) If
$$\lim_{x \to a} f(x) = A \in \mathbb{R}$$
 and $\lim_{x \to a} g(x) = \pm \infty$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$.

The rules to calculate limits according to Theorem 14 can be easily remembered in the following form:

$\infty + \infty = \infty$	$-\infty \cdot \infty \equiv -\infty$		
$\infty\cdot\infty = \infty$	$A \cdot \infty = \infty$ when $A > 0$		
$-\infty + (-\infty) = -\infty$	$A \cdot (-\infty) = -\infty$ when $A > 0$		
$-\infty \cdot (-\infty) = \infty$	$\frac{A}{\pm\infty} = 0$ when $A \in \mathbb{R}$		

Theorem 15 Let f be a function bounded on a neighbourhood P(a) of $a \in \mathbb{R} \cup \{+\infty, -\infty\}$. Then the following holds:

- (i) if $\lim_{x\to a} g(x) = \pm \infty$, then $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$,
- (*ii*) if $\lim_{x \to a} g(x) = 0$, then $\lim_{x \to a} f(x)g(x) = 0$.

Theorem 16 Consider functions f and g defined on a neighbourhood $\mathcal{P}(a)$ of $a \in \mathbb{R} \cup \{+\infty, -\infty\}$. Let $\lim_{x \to a} f(x) = A > 0$ and let $\lim_{x \to a} g(x) = 0$.

- (i) If g(x) > 0 on $\mathcal{P}(a)$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = +\infty$.
- (ii) If g(x) < 0 on $\mathcal{P}(a)$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = -\infty$.
- (iii) If the function g takes positive and negative values on every neighbourhood P(a), then $\lim_{x \to a} \frac{f(x)}{g(x)}$ does not exist.

Mnemonics for Theorem 16:

 $\frac{A}{0_{+}} = +\infty \text{ when } A > 0 \quad \frac{A}{0_{-}} = -\infty \text{ when } A > 0$

Theorem 17 Squeeze or Sandwich theorem:

Let $a \in \mathbb{R} \cup \{+\infty, -\infty\}$ and let the functions f, g, h be defined on a neighbourhood $\mathcal{P}(a)$.

- If $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L \in \mathbb{R}$ and $\forall x \in \mathcal{P}(a) : g(x) \le f(x) \le h(x)$, then $\lim_{x \to a} f(x) = L$.
- If $\lim_{x \to a} g(x) = \infty$ and $\forall x \in \mathcal{P}(a) : g(x) \le f(x)$, then $\lim_{x \to a} f(x) = \infty$.
- If $\lim_{x \to a} h(x) = -\infty$ and $\forall x \in \mathcal{P}(a) : f(x) \le h(x)$, then $\lim_{x \to a} f(x) = -\infty$.

Note that the following expressions are indefinite, they depend on instances.

$\infty - \infty$	$0\cdot\infty$	8 8	$\frac{0}{0}$	1∞	0^{0}	∞^0

1.5 Limits of sequencies

Definition 11 We define a sequence $\{a_n\}_{n=1}^{\infty}$ to be a function whose domain is a subset of \mathbb{N} (or more generally of \mathbb{Z}) and whose codomain is \mathbb{R} . Namely, $\{a_n\}_{n=1}^{\infty} : n \in \mathbb{N} \mapsto a_n \in \mathbb{R}$. The values a_n are called the elements (or terms, members) of the sequence $\{a_n\}_{n=1}^{\infty}$, n is called the index of the element a_n .

Examples:

Arithmetic sequence: $a_n = a_1 + (n-1)d$, where $n \in \mathbb{N}$ and $d \in \mathbb{R}$ is a common difference Geometric sequence: $a_n = a_1 \cdot q^{n-1}$, where $n \in \mathbb{N}$ and $q \in \mathbb{R} \setminus \{0\}$ is a common ratio (or quotient)

Definition 12 We say that a sequence $\{a_n\}_{n=1}^{\infty}$ has a limit A, i.e. $\lim_{n \to \infty} a_n = A$, if

- *in case* $A \in \mathbb{R}$: $\forall O_{\varepsilon}(A) \exists n_0 \in \mathbb{N} \forall n \ge n_0 : a_n \in O_{\varepsilon}(A)$,
- in case $A = +\infty$: $\forall K > 0 \exists n_0 \in \mathbb{N} \ \forall n \ge n_0$: $a_n > K$,
- in case $A = -\infty$: $\forall L < 0 \exists n_0 \in \mathbb{N} \ \forall n \ge n_0$: $a_n < L$.

A sequence $\{a_n\}_{n=1}^{\infty}$ is called convergent if it has a proper limit, i.e. $\lim_{n\to\infty} a_n \in \mathbb{R}$.

A sequence $\{a_n\}_{n=1}^{\infty}$ is called divergent if $\lim_{n\to\infty} a_n = \pm \infty$ or if $\lim_{n\to\infty} a_n$ does not exist.

Definition 13 Consider a sequence $\{a_n\}_{n=1}^{\infty}$.

- (*i*) If $\forall n \in \mathbb{N}$: $a_n < a_{n+1}$, we say that $\{a_n\}_{n=1}^{\infty}$ is increasing.
- (*ii*) If $\forall n \in \mathbb{N}$: $a_n \leq a_{n+1}$, we say that $\{a_n\}_{n=1}^{\infty}$ is non-decreasing.
- (iii) If $\forall n \in \mathbb{N}$: $a_n > a_{n+1}$, we say that $\{a_n\}_{n=1}^{\infty}$ is decreasing.
- (iv) If $\forall n \in \mathbb{N}$: $a_n \ge a_{n+1}$, we say that $\{a_n\}_{n=1}^{\infty}$ is non-increasing.

Theorem 18 A decreasing or non-increasing sequence is bounded above. An increasing or non-decreasing sequence is bounded below.

Theorem 19 A monotone sequence has always limit. If the sequence is bounded, then the limit is proper.

Remark 3 One can prove that there exists a limit of the sequence $\lim_{n\to\infty} (1+\frac{1}{n})^n$. This limit is used to define Euler's number e.