
Handouts - week 2

1 Continuity and limits of functions

Terminology: Consider an arbitrary a ∈ R and an arbitrary ε > 0.

• The open interval (a− ε,a+ ε) is called the ε-neighbourhood of the point a. We denote it by Oε(a).

• The intervals O+
ε (a)= [a,a+ε) and O−ε (a)= (a− ε,a ] are referred to as a right and a left ε-neighbourhood

of a, respectively.

• Neighbourhoods of the point a from which a itself is excluded are called punctured (sometimes deleted).
Namely, P ε(a) =Oε(a)\{a} denotes the punctured ε-neighbourhood of a, P+

ε (a) = (a,a+ε) denotes the
punctured right ε-neighbourhood of a and P−ε (a) = (a−ε,a) denotes the punctured left ε-neighbourhood
of a.

• If x takes values arbitrarily close to a, we say x approaches a (or x tends to a) and we write x→ a.
Similarly one defines the notation x→ a+, x→ a−, x→+∞, x→−∞.

1.1 Continuity of a function

Definition 1 Let f be a real function of one real variable defined in a neighbourhood of a. We say that f is
continuous at a ∈ D( f ) if

∀Oε( f (a)) ∃Oδ(a) : f (Oδ(a))⊆ Oε( f (a)).

Equivalently,
∀ε > 0 ∃δ > 0 : |x−a|< δ⇒ | f (x)− f (a)|< ε.

Definition 2 We say that f is continuous on an open interval (a,b) if it is continuous at each point of (a,b).

Definition 3 We say that a function f is

• continuous from the right (right-hand side continuous) at a point a ∈ D( f ) if

∀Oε( f (a)) ∃O+
δ
(a) : f (O+

δ
(a))⊆ Oε( f (a)),

• continuous from the left (left-hand side continuous) at a point a ∈ D( f ) if

∀Oε( f (a)) ∃O−
δ
(a) : f (O−

δ
(a))⊆ Oε( f (a)).

Definition 4 We say that a function f is continuous on a closed interval [a,b ] if it is

• continuous at each point of (a,b),

• continuous from the right at the point a,

• continuous from the left at the point b.

Theorem 1 Let a ∈ R and let f and g be functions continuous at a. Then the functions | f |, f ± g, f · g are
continuous at a. Further, if g(a) 6= 0 then f

g is continuous at a.

Theorem 2 If a function y = f (x) is continuous at a point x = a and a function z = g(y) is continuous at the
point y = f (a), then the composition (g◦ f )(x) is continuous at point x = a.
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1.2 Limit of a function

Definition 5 Let a ∈ R and let f : D( f )→ R be a function defined in a punctured neighbourhood of a. We say
that the limit of the function f (x) as x approaches a is equal to A ∈ R (or that the function f has the limit A at
a) and we write limx→a f (x) = A if

∀Oε(A) ∃P δ(a) : f (P δ(a))⊂ Oε(A)

or equivalently
∀ε > 0 ∃δ > 0 : 0 < |x−a|< δ⇒ | f (x)−A|< ε

Theorem 3 A function has at a given point at most one limit.

The following theorems are useful for calculating the limits:

Theorem 4 Function f is continuous at a point a ∈ D( f ) if and only if lim
x→a

f (x) = f (a).

Theorem 5 Let f : D( f )→ R, g : D(g)→ R, a ∈ R. Then

∃P (a) : (∀x ∈ P (a) : f (x) = g(x))⇒ lim
x→a

f (x) = lim
x→a

g(x).

Theorem 6 (so-called Squeeze or Sandwich theorem) Let the following conditions hold:

• ∀x ∈ P (a) : g(x)≤ f (x)≤ h(x),

• lim
x→a

g(x) = lim
x→a

h(x),

then there exists lim
x→a

f (x) and it equals lim
x→a

g(x).

Theorem 7 Let lim
x→a

f (x) = A ∈ R and let lim
x→a

g(x) = B ∈ R. Then

(i) lim
x→a

( f (x)±g(x)) = lim
x→a

f (x)± lim
x→a

g(x) = A±B,

(ii) lim
x→a

( f (x) ·g(x)) = lim
x→a

f (x) · lim
x→a

g(x) = A ·B,

(iii) if B 6= 0 then lim
x→a

f (x)
g(x)

= (lim
x→a

f (x))/(lim
x→a

g(x)) =
A
B

.

Theorem 8 Let lim
x→a

g(x) = A ∈ R and let f be a function continuous at A. Then

lim
x→a

f (g(x)) = f (A).

Remark 1 lim
x→a

[ f (x)]g(x) = lim
x→a

eg(x) ln f (x)

1.3 One-sided limits of a function

Definition 6 Let a ∈R and let f : D( f )→R be such that a punctured right neighbourhood of a is contained in
D( f ). We say that f has the right-sided limit A ∈ R at the point a ( lim

x→a+
f (x) = A) if

∀Oε(A) ∃P+
δ
(a) : f (P+

δ
(a))⊂ Oε(A).

Definition 7 Let a ∈ R and let f : D( f )→ R be such that a punctured left neighbourhood of a is contained in
D( f ). We say that f has the left-sided limit A ∈ R at the point a ( lim

x→a−
f (x) = A) if

∀Oε(A) ∃P−δ (a) : f (P−
δ
(a))⊂ Oε(A).
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Theorem 9 lim
x→a

f (x) exists if and only if lim
x→a+

f (x) = lim
x→a−

f (x). Then

lim
x→a

f (x) = lim
x→a+

f (x) = lim
x→a−

f (x).

The theorems stated above for two-sided limits hold for one-sided limits as well.

Theorem 10 Let f : D( f )→ R, g : D(g)→ R, a ∈ R.

(i) f has at a at most one left-sided (right-sided) limit.

(ii) f is left-hand (right-hand) side continuous at a if and only if lim
x→a−

f (x) = f (a) ( lim
x→a+

f (x) = f (a)).

(iii) If f = g on a punctured left (right) neighbourhood of a, then lim
x→a−

f (x)= lim
x→a−

g(x) ( lim
x→a+

f (x)= lim
x→a+

g(x)).

(iv) Squeeze theorem:
If ∀x ∈ P±(a) : g(x)≤ f (x)≤ h(x) and lim

x→a±
g(x) = lim

x→a±
h(x), then lim

x→a±
f (x) = lim

x→a±
g(x).

(v) lim
x→a±

( f (x)±̇g(x)) = lim
x→a±

f (x)±̇ lim
x→a±

g(x)

(vi) lim
x→a±

f (x)
g(x)

= ( lim
x→a±

f (x))/( lim
x→a±

g(x)) if lim
x→a±

g(x) 6= 0

(vii) If lim
x→a±

g(x) = A ∈ R and f is left-hand (right-hand) side continuous at A, then lim
x→a±

f (g(x)) = f (A).

1.4 Limits involving infinity

Till now we have studied the limits lim
x→a

f (x) = L, where a,L ∈R. Such limits are referred to as the proper limits
at proper points. If a = ±∞, one considers the limits at plus/minus infinity. One can refer to them as limits at
improper points. If L =±∞, one says that the function f (x) diverges at a. One calls such limits improper.

Definitions of improper limits of functions at proper/improper points are identical to the definition of proper
limits of functions at proper points. However, one needs to recall that open (punctured) neighbourhoods of
−∞ are open intervals (−∞,a), a ∈ R∪{∞} and that open (punctured) neighbourhoods of ∞ are open intervals
(a,∞), a ∈ R∪{−∞}. To make it clear we state the respective definitions below.

Definition 8 Improper limits at proper points
Let a function f be defined on a neighbourhood P (a) of a ∈ R. Then

(i) lim
x→a

f (x) = ∞ if ∀K > 0 ∃P δ(a) ∀x ∈ P δ(a) : f (x)> K,

(ii) lim
x→a

f (x) =−∞ if ∀L < 0 ∃P δ(a) ∀x ∈ P δ(a) : f (x)< L.

Remark 2 By considering P+
δ
(a) or P−

δ
(a) instead of P δ(a) in Definition 8, one defines the respective one-

sided improper limits at proper points.

Definition 9 Proper limits at improper points

(i) Let a ∈ R∪{−∞} and let f be a function such that (a,∞) ⊆ D( f ). We say that f has the proper limit
L ∈ R at ∞ and write lim

x→∞
f (x) = L if ∀Oε(L) ∃b > 0 ∀x > b : f (x) ∈ Oε(L).

(ii) Let a ∈ R∪{∞} and let f be a function such that (−∞,a) ⊆ D( f ). We say that f has the proper limit L
at −∞ and write lim

x→−∞
f (x) = L ∈ R if ∀Oε(L) ∃b < 0 ∀x < b : f (x) ∈ Oε(L).

Definition 10 Improper limits at improper points

(i) Let a ∈R∪{+∞} and let f be a function such that (−∞,a)⊆D( f ). We say that f has the improper limit
+∞ at −∞ and write lim

x→−∞
f (x) = ∞ if ∀K > 0 ∃b < 0 ∀x < b : f (x)> K.
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(ii) Let a ∈R∪{+∞} and let f be a function such that (−∞,a)⊆D( f ). We say that f has the improper limit
−∞ at −∞ and write lim

x→−∞
f (x) =−∞ if ∀L < 0 ∃b < 0 ∀x < b : f (x)< L.

(iii) Let a ∈ R∪{−∞} and let f be a function such that (a,∞)⊆ D( f ). We say that f has the improper limit
+∞ at +∞ and write lim

x→∞
f (x) = ∞ if ∀K > 0 ∃b > 0 ∀x > b : f (x)> K.

(iv) Let a ∈ R∪{−∞} and let f be a function such that (a,∞)⊆ D( f ). We say that f has the improper limit
−∞ at +∞ and write lim

x→∞
f (x) =−∞ if ∀L < 0 ∃b > 0 ∀x > b : f (x)< L.

The following theorems are useful for calculating (im)proper limits of functions at (im)proper points.

Theorem 11 Let a function f be defined on a neighbourhood P (a) of a ∈ R. Then

(i) lim
x→a

f (x) = ∞ ⇔ lim
x→a+

f (x) = lim
x→a−

f (x) = ∞

(ii) lim
x→a

f (x) =−∞ ⇔ lim
x→a+

f (x) = lim
x→a−

f (x) =−∞

Theorem 12 Let f and g be functions such that f = g on a neighbourhood P (a) of a ∈ R∪{+∞,−∞}. Then
lim
x→a

f (x) = lim
x→a

g(x).

Theorem 13 Let lim
x→±∞

f (x) = A ∈ R and lim
x→±∞

g(x) = B ∈ R. Then

(i) lim
x→±∞

( f (x)±g(x)) = lim
x→±∞

f (x)± lim
x→±∞

g(x) = A±B,

(ii) lim
x→±∞

( f (x) ·g(x)) = lim
x→±∞

f (x) · lim
x→±∞

g(x) = A ·B,

(iii) if B 6= 0, then lim
x→±∞

f (x)
g(x)

=
limx→±∞ f (x)
limx→±∞ g(x)

=
A
B

.

Theorem 14 Consider functions f and g defined on a neighbourhood P (a) of a ∈ R∪{+∞,−∞}.

(i) If lim
x→a

f (x) = ∞ and lim
x→a

g(x) = ∞, then lim
x→a

( f (x)+g(x)) = ∞ and lim
x→a

( f (x) ·g(x)) = ∞.

(ii) If lim
x→a

f (x) =−∞ and lim
x→a

g(x) =−∞, then lim
x→a

( f (x)+g(x)) =−∞ and lim
x→a

( f (x) ·g(x)) = ∞.

(iii) If lim
x→a

f (x) = ∞ and lim
x→a

g(x) =−∞, then lim
x→a

( f (x) ·g(x)) =−∞.

(iv) If lim
x→a

f (x) = A ∈ R, A > 0 and lim
x→a

g(x) =±∞, then lim
x→a

( f (x) ·g(x)) =±∞.

(v) If lim
x→a

f (x) = A ∈ R and lim
x→a

g(x) =±∞, then lim
x→a

f (x)
g(x) = 0.

The rules to calculate limits according to Theorem 14 can be easily remembered in the following form:

∞+∞ = ∞ −∞ ·∞ =−∞

∞ ·∞ = ∞ A ·∞ = ∞ when A > 0
−∞+(−∞) =−∞ A · (−∞) =−∞ when A > 0
−∞ · (−∞) = ∞

A
±∞

= 0 when A ∈ R

Theorem 15 Let f be a function bounded on a neighbourhood P(a) of a ∈ R∪{+∞,−∞}. Then the following
holds:

(i) if lim
x→a

g(x) =±∞, then lim
x→a

f (x)
g(x) = 0,

(ii) if lim
x→a

g(x) = 0, then lim
x→a

f (x)g(x) = 0.

Theorem 16 Consider functions f and g defined on a neighbourhood P (a) of a∈R∪{+∞,−∞}. Let lim
x→a

f (x)=

A > 0 and let lim
x→a

g(x) = 0.
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(i) If g(x)> 0 on P (a), then lim
x→a

f (x)
g(x) =+∞.

(ii) If g(x)< 0 on P (a), then lim
x→a

f (x)
g(x) =−∞.

(iii) If the function g takes positive and negative values on every neighbourhood P(a), then lim
x→a

f (x)
g(x) does not

exist.

Mnemonics for Theorem 16:

A
0+

=+∞ when A > 0 A
0−

=−∞ when A > 0

Theorem 17 Squeeze or Sandwich theorem:
Let a ∈ R∪{+∞,−∞} and let the functions f ,g,h be defined on a neighbourhood P (a).

• If lim
x→a

g(x) = lim
x→a

h(x) = L ∈ R and ∀x ∈ P (a) : g(x)≤ f (x)≤ h(x), then lim
x→a

f (x) = L.

• If lim
x→a

g(x) = ∞ and ∀x ∈ P (a) : g(x)≤ f (x), then lim
x→a

f (x) = ∞.

• If lim
x→a

h(x) =−∞ and ∀x ∈ P (a) : f (x)≤ h(x), then lim
x→a

f (x) =−∞.

Note that the following expressions are indefinite, they depend on instances.

∞−∞ 0 ·∞ ∞

∞

0
0 1∞ 00 ∞0

1.5 Limits of sequencies

Definition 11 We define a sequence {an}∞
n=1 to be a function whose domain is a subset of N (or more generally

of Z) and whose codomain is R. Namely, {an}∞
n=1 : n ∈ N 7→ an ∈ R. The values an are called the elements (or

terms, members) of the sequence {an}∞
n=1, n is called the index of the element an.

Examples:
Arithmetic sequence: an = a1 +(n−1)d, where n ∈ N and d ∈ R is a common difference
Geometric sequence: an = a1 ·qn−1, where n ∈ N and q ∈ R\{0} is a common ratio (or quotient)

Definition 12 We say that a sequence {an}∞
n=1 has a limit A, i.e. lim

n→∞
an = A, if

• in case A ∈ R: ∀Oε(A) ∃n0 ∈ N ∀n≥ n0 : an ∈ Oε(A),

• in case A =+∞: ∀K > 0 ∃n0 ∈ N ∀n≥ n0 : an > K,

• in case A =−∞: ∀L < 0 ∃n0 ∈ N ∀n≥ n0 : an < L.

A sequence {an}∞
n=1 is called convergent if it has a proper limit, i.e. lim

n→∞
an ∈ R.

A sequence {an}∞
n=1 is called divergent if lim

n→∞
an =±∞ or if lim

n→∞
an does not exist.

Definition 13 Consider a sequence {an}∞
n=1.

(i) If ∀n ∈ N : an < an+1, we say that {an}∞
n=1 is increasing.

(ii) If ∀n ∈ N : an ≤ an+1, we say that {an}∞
n=1 is non-decreasing.

(iii) If ∀n ∈ N : an > an+1, we say that {an}∞
n=1 is decreasing.

(iv) If ∀n ∈ N : an ≥ an+1, we say that {an}∞
n=1 is non-increasing.

Theorem 18 A decreasing or non-increasing sequence is bounded above. An increasing or non-decreasing
sequence is bounded below.

Theorem 19 A monotone sequence has always limit. If the sequence is bounded, then the limit is proper.

Remark 3 One can prove that there exists a limit of the sequence lim
n→∞

(
1+ 1

n

)n
. This limit is used to define

Euler’s number e.
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