4 Real functions of one real variable

Intuitively: A function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output.

Definition 4 A function f from X to Y is a subset of the Cartesian product $X \times Y$ subject to the following condition: for every x in X there is exactly one element y in Y such that the ordered pair (x, y) is contained in the subset defining the function f.

We use the notation: $y=f(x), f: X \rightarrow Y, x \mapsto f(x), f: x \mapsto y$. In the expression $f(x), x$ is the argument and $f(x)$ is the value of the function f.

The set X is called the domain of f, we denote it by $D(f)$. The natural domain of a function is the maximal set of values for which the function is defined.

The set Y is called the codomain of f.
The image (sometimes called the range) of f, denoted by $H(f)$, is the set of all values assumed by f for all possible x, i.e. $H(f)=\{f(x) \mid x \in D(f)\}$.

A function $f: X \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is a real function of one real variable.

Functions can be specified by formulae, algorithms, tables, graphs,

Definition 5 The graph of a function f is the set of all ordered pairs $(x, f(x))$, where $x \in D(f)$.
Remark 1 Two functions f and g equal $(f=g)$ if
(i) $D(f)=D(g)$
(ii) $\forall x \in D(f): f(x)=g(x)$

5 Operations on functions

Definition 6 Let f, g be real functions of one real variable.

- The sum of f and g is the function $h=f+g$ such that
(i) $D(h)=D(f) \cap D(g)$,
(ii) $\forall x \in D(h): h(x)=f(x)+g(x)$.
- The product of f and g is the function $h=f . g$ such that
(i) $D(h)=D(f) \cap D(g)$,
(ii) $\forall x \in D(h): h(x)=f(x) \cdot g(x)$.
- The quotient of f and g is the function $h=\frac{f}{g}$ such that
(i) $D(h)=(D(f) \cap D(g)) \backslash N(g)$, where $N(g)=\{x \in D(g) \mid g(x)=0\}$,
(ii) $\forall x \in D(h): h(x)=\frac{f(x)}{g(x)}$.
- Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Then the function $h=g \circ f: X \rightarrow Z$ defined as
(i) $D(h)=\{x \in D(f) \mid f(x) \in D(g)\}$,
(ii) $\forall x \in D(h): h(x)=g(f(x))$,
is called the composition of f with g. We refer to g as the outer function and to f as the inner function.

Remark 2 It is not in general true that $g \circ f=f \circ g$.

6 Basic properties of functions

Definition 7 A function $f: D(f) \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is injective on $M \subseteq D(f)$ iff

$$
\forall x_{1}, x_{2} \in M: x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

- Equivalent formulation (used to prove that f is injective):

$$
\forall x_{1}, x_{2} \in M: f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}
$$

- Negation (used to prove that f is not injective):

$$
\exists x_{1}, x_{2} \in M: x_{1} \neq x_{2} \wedge f\left(x_{1}\right)=f\left(x_{2}\right)
$$

Definition 8 A function $f: X \rightarrow Y$ is surjective iff $\forall y \in Y \exists x \in X: y=f(x)$.
Definition 9 Consider a function $f: D(f) \subseteq \mathbb{R} \rightarrow \mathbb{R}$ and a set $M \subseteq D(f)$. If for all $x_{1}, x_{2} \in M$, $x_{1}<x_{2}$ it holds that
(i) $f\left(x_{1}\right)<f\left(x_{2}\right)$, then f is increasing on M,
(ii) $f\left(x_{1}\right) \leq f\left(x_{2}\right)$, then f is non-decreasing on M,
(iii) $f\left(x_{1}\right)>f\left(x_{2}\right)$, then f is decreasing on M,
(iv) $f\left(x_{1}\right) \geq f\left(x_{2}\right)$, then f is non-increasing on M.

If f satisfies any of $(i)-(i v)$, it is called monotone. If f satisfies either (i) or (iii), it is called strictly monotone.

Proposition 1 The sum of two increasing (decreasing) functions is an increasing (decreasing) function.

Theorem 1 Let f be a strictly monotone function on a set $M \subseteq \mathbb{R}$. Then f is injective on M.
Definition 10 We say that a function f is
(i) bounded below on $D(f)$ iff $\exists b \in \mathbb{R} \forall x \in D(f): b \leq f(x)$,
(ii) bounded above on $D(f)$ iff $\exists a \in \mathbb{R} \forall x \in D(f): f(x) \leq a$,
(iii) bounded on $D(f)$ iff it is bounded below and above on $D(f)$.

Definition 11 We say that a function f is
(i) even iff $x \in D(f) \Leftrightarrow-x \in D(f)$ and $\forall x \in D(f): f(x)=f(-x)$,
(ii) odd iff $x \in D(f) \Leftrightarrow-x \in D(f)$ and $\forall x \in D(f): f(x)=-f(-x)$.

Remark 3

(i) The graph of an even function is symmetric w.r.t. y-axis.
(ii) The graph of an odd function is symmetric w.r.t. the origin.
(iii) Domains of even and odd functions are symmetric w.r.t. the origin.

Definition 12 A function $f: D(f) \rightarrow \mathbb{R}$ is said to be periodic iff $\exists p \in \mathbb{R}, p \neq 0$ such that
(i) $x \in D(f) \Rightarrow x \pm p \in D(f)$,
(ii) $\forall x \in D(f): \quad f(x \pm p)=f(x)$.
p is a period of f. The smallest positive period is called the fundamental period (or primitive period, basic period, prime period).

Theorem 2

(i) Let f be a periodic function with period p and let g be a function such that $H(f) \subseteq D(g)$. Then the function $g \circ f$ is periodic with period p.
(ii) Let f be a periodic function with period p and let $a \in \mathbb{R}, a \neq 0$. Then the function $g(x)=f(a x)$ is periodic with period $\frac{p}{a}$.

6.1 Inverse functions

Definition 13 Let f be an injective function. The inverse function of f is the function f^{-1} defined as follows

- $D\left(f^{-1}\right)=H(f)$
- $H\left(f^{-1}\right)=D(f)$
- $y=f(x) \Leftrightarrow x=f^{-1}(y)$

Remark 4

(i) The graph of f^{-1} can be obtained from the graph of f by switching the positions of the x and y axes. This is equivalent to reflecting the graph across the line $y=x$.
(ii) $\forall x \in D(f): f^{-1}(f(x))=x$
(iii) $\forall y \in D\left(f^{-1}\right)=H(f): f\left(f^{-1}(y)\right)=y$
(iv) $\left(f^{-1}\right)^{-1}=f$

Remark 5 Exponential and logarithmic functions

- $y=a^{x} \Leftrightarrow x=\log _{a}(y), x \in \mathbb{R}, y>0,1 \neq a>0$
- Note that $f(x)^{g(x)}=e^{g(x) \ln (f(x))}$.

Theorem 3 Properties of inverse trigonometric functions:

$f(x)$	$\arcsin (x)$	$\arccos (x)$	$\arctan (x)$	$\operatorname{arccot}(x)$
$D(f)$	$\langle-1,1\rangle$	$\langle-1,1\rangle$	\mathbb{R}	\mathbb{R}
$H(f)$	$\left\langle-\frac{\pi}{2}, \frac{\pi}{2}\right\rangle$	$\langle 0, \pi\rangle$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	$(0, \pi)$
increasing	\checkmark	-	\checkmark	-
decreasing	-	\checkmark	-	\checkmark
even	-	-	-	-
odd	\checkmark	-	\checkmark	-
$f^{-1}(x)$	$\sin (x)$	$\cos (x)$	$\tan (x)$	$\cot (x)$
	$x \in\left\langle-\frac{\pi}{2}, \frac{\pi}{2}\right\rangle$	$x \in\langle 0, \pi\rangle$	$x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	$x \in(0, \pi)$

Theorem 4

(i) $\arcsin (x)+\arccos (x)=\frac{\pi}{2}$ for $x \in\langle-1,1\rangle$
(ii) $\arctan (x)+\operatorname{arccot}(x)=\frac{\pi}{2}$ for $x \in \mathbb{R}$

