4 Real functions of one real variable

Intuitively: A *function* is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output.

Definition 4 A function f from X to Y is a subset of the Cartesian product $X \times Y$ subject to the following condition: for every x in X there is exactly one element y in Y such that the ordered pair (x, y) is contained in the subset defining the function f.

We use the notation: y = f(x), $f: X \to Y$, $x \mapsto f(x)$, $f: x \mapsto y$. In the expression f(x), x is the argument and f(x) is the value of the function f.

The set X is called the domain of f, we denote it by D(f). The natural domain of a function is the maximal set of values for which the function is defined.

The set Y is called the codomain of f.

The image (sometimes called the range) of f, denoted by H(f), is the set of all values assumed by f for all possible x, i.e. $H(f) = \{f(x) | x \in D(f)\}.$

A function $f: X \subseteq \mathbb{R} \to \mathbb{R}$ is a real function of one real variable.

Functions can be specified by formulae, algorithms, tables, graphs, \dots .

Definition 5 The graph of a function f is the set of all ordered pairs (x, f(x)), where $x \in D(f)$.

Remark 1 Two functions f and g equal (f = g) if

$$(i) D(f) = D(g)$$

(*ii*) $\forall x \in D(f) : f(x) = g(x)$

5 Operations on functions

Definition 6 Let f, g be real functions of one real variable.

- The sum of f and g is the function h = f + g such that
 - (i) $D(h) = D(f) \cap D(g)$,
 - (ii) $\forall x \in D(h) : h(x) = f(x) + g(x).$
- The product of f and g is the function h = f.g such that
 - (i) $D(h) = D(f) \cap D(g)$,
 - (ii) $\forall x \in D(h) : h(x) = f(x).g(x).$
- The quotient of f and g is the function $h = \frac{f}{g}$ such that
 - (i) $D(h) = (D(f) \cap D(g)) \setminus N(g)$, where $N(g) = \{x \in D(g) | g(x) = 0\}$,
 - (ii) $\forall x \in D(h) : h(x) = \frac{f(x)}{g(x)}$.
- Let $f: X \to Y$ and $g: Y \to Z$. Then the function $h = g \circ f: X \to Z$ defined as
 - (i) $D(h) = \{x \in D(f) | f(x) \in D(g)\},\$
 - (ii) $\forall x \in D(h) : h(x) = g(f(x)),$

is called the composition of f with g. We refer to g as the outer function and to f as the inner function.

Remark 2 It is not in general true that $g \circ f = f \circ g$.

6 Basic properties of functions

Definition 7 A function $f: D(f) \subseteq \mathbb{R} \to \mathbb{R}$ is injective on $M \subseteq D(f)$ iff

 $\forall x_1, x_2 \in M : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2).$

- Equivalent formulation (used to prove that f is injective):

$$\forall x_1, x_2 \in M : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

- Negation (used to prove that f is not injective):

$$\exists x_1, x_2 \in M : x_1 \neq x_2 \land f(x_1) = f(x_2)$$

Definition 8 A function $f: X \to Y$ is surjective iff $\forall y \in Y \exists x \in X : y = f(x)$.

Definition 9 Consider a function $f : D(f) \subseteq \mathbb{R} \to \mathbb{R}$ and a set $M \subseteq D(f)$. If for all $x_1, x_2 \in M$, $x_1 < x_2$ it holds that

- (i) $f(x_1) < f(x_2)$, then f is increasing on M,
- (ii) $f(x_1) \leq f(x_2)$, then f is non-decreasing on M,
- (iii) $f(x_1) > f(x_2)$, then f is decreasing on M,
- (iv) $f(x_1) \ge f(x_2)$, then f is non-increasing on M.

If f satisfies any of (i) - (iv), it is called monotone. If f satisfies either (i) or (iii), it is called strictly monotone.

Proposition 1 The sum of two increasing (decreasing) functions is an increasing (decreasing) function.

Theorem 1 Let f be a strictly monotone function on a set $M \subseteq \mathbb{R}$. Then f is injective on M.

Definition 10 We say that a function f is

- (i) bounded below on D(f) iff $\exists b \in \mathbb{R} \ \forall x \in D(f) : b \leq f(x)$,
- (*ii*) bounded above on D(f) iff $\exists a \in \mathbb{R} \ \forall x \in D(f) : f(x) \leq a$,

(iii) bounded on D(f) iff it is bounded below and above on D(f).

Definition 11 We say that a function f is

- (i) even iff $x \in D(f) \Leftrightarrow -x \in D(f)$ and $\forall x \in D(f) : f(x) = f(-x)$,
- (ii) odd iff $x \in D(f) \Leftrightarrow -x \in D(f)$ and $\forall x \in D(f) : f(x) = -f(-x)$.

Remark 3

- (i) The graph of an even function is symmetric w.r.t. y-axis.
- (ii) The graph of an odd function is symmetric w.r.t. the origin.
- (iii) Domains of even and odd functions are symmetric w.r.t. the origin.

Definition 12 A function $f: D(f) \to \mathbb{R}$ is said to be periodic iff $\exists p \in \mathbb{R}, p \neq 0$ such that

- (i) $x \in D(f) \Rightarrow x \pm p \in D(f)$,
- (ii) $\forall x \in D(f) : f(x \pm p) = f(x).$

p is a period of f. The smallest positive period is called the fundamental period (or primitive period, basic period, prime period).

Theorem 2

- (i) Let f be a periodic function with period p and let g be a function such that $H(f) \subseteq D(g)$. Then the function $g \circ f$ is periodic with period p.
- (ii) Let f be a periodic function with period p and let $a \in \mathbb{R}$, $a \neq 0$. Then the function g(x) = f(ax) is periodic with period $\frac{p}{a}$.

6.1 Inverse functions

Definition 13 Let f be an injective function. The inverse function of f is the function f^{-1} defined as follows

- $D(f^{-1}) = H(f)$
- $H(f^{-1}) = D(f)$
- $y = f(x) \Leftrightarrow x = f^{-1}(y)$

Remark 4

- (i) The graph of f^{-1} can be obtained from the graph of f by switching the positions of the x and y axes. This is equivalent to reflecting the graph across the line y = x.
- (*ii*) $\forall x \in D(f) : f^{-1}(f(x)) = x$
- $(iii) \ \forall y \in D(f^{-1}) = H(f) : f(f^{-1}(y)) = y$
- $(iv) (f^{-1})^{-1} = f$

Remark 5 Exponential and logarithmic functions

- $y = a^x \Leftrightarrow x = \log_a(y), x \in \mathbb{R}, y > 0, 1 \neq a > 0$
- Note that $f(x)^{g(x)} = e^{g(x) \ln(f(x))}$.

Theorem 3 Properties of inverse trigonometric functions:

$\overline{f(x)}$	$\arcsin(x)$	$\arccos(x)$	$\arctan(x)$	$\operatorname{arccot}(x)$
$\overline{D(f)}$	$\langle -1,1\rangle$	$\langle -1,1\rangle$	\mathbb{R}	\mathbb{R}
H(f)	$\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$	$\langle 0,\pi angle$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$(0,\pi)$
increasing	\checkmark	_	\checkmark	_
decreasing	—	\checkmark	—	\checkmark
even	—	_	—	_
odd	\checkmark	_	\checkmark	_
$f^{-1}(x)$	$\sin(x)$	$\cos(x)$	$\tan(x)$	$\cot(x)$
	$x \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$	$x\in \langle 0,\pi\rangle$	$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	$x \in (0,\pi)$

Theorem 4

- (i) $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$ for $x \in \langle -1, 1 \rangle$
- (*ii*) $\arctan(x) + \operatorname{arccot}(x) = \frac{\pi}{2}$ for $x \in \mathbb{R}$