Taylor polynomial. Differential.

Brook Taylor (1685-1731)

Taylor polynomial

Taylor polynomial

Recall: Polynomial of n-th degree
$P_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}, \quad a_{i} \in \mathbb{R}, a_{n} \neq 0$.
easy to evaluate (Horner's method)

Our goal:

For a given function f and given point x_{0} find a "simpler function" such that on a neighborhood of x_{0} it has values "close"to $f(x)$. It will be T_{n}.

Definition: Suppose that function f has n proper derivatives at point x_{0}, then we define Taylor polynomial of the n-th degree of function f at point x_{0} as

$$
T_{n}(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} .
$$

$$
T_{n}(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

Remarks:

■ It is polynomial of degree at most n.

- $f^{(k)}\left(x_{0}\right)$ are constants.
$\square 0!=1, \quad 1!=1, \quad 2!=2, \quad 3!=6, \quad 4!=4 \cdot 3 \cdot 2 \cdot 1=$ 24, ...
- T_{1} describes the tangent to the graph.

Assertion: For a Taylor polynomial T_{n} of function f at point x_{0} the following holds true:

$$
T_{n}\left(x_{0}\right)=f\left(x_{0}\right), \quad T_{n}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right), \ldots, T_{n}^{(n)}\left(x_{0}\right)=f^{(n)}\left(x_{0}\right) .
$$

$$
T_{n}(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

Remarks:

■ It is polynomial of degree at most n.

- $f^{(k)}\left(x_{0}\right)$ are constants.
$\square 0!=1, \quad 1!=1, \quad 2!=2, \quad 3!=6, \quad 4!=4 \cdot 3 \cdot 2 \cdot 1=$ 24, ...
■ T_{1} describes the tangent to the graph.
Assertion: For a Taylor polynomial T_{n} of function f at point x_{0} the following holds true:

$$
T_{n}\left(x_{0}\right)=f\left(x_{0}\right), \quad T_{n}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right), \ldots, T_{n}^{(n)}\left(x_{0}\right)=f^{(n)}\left(x_{0}\right) .
$$

Corollary: In neighborhood of x_{0}, the Taylor polynomial is a good approximation of function f, i.e.

For $\quad x \doteq x_{0} \quad$ we have $\quad f(x) \doteq T_{n}(x)$.

Taylor's formula

Taylor's formula

Definition: Let $T_{n}(x)$ be Taylor's polynomial of function f at point x_{0}. Denote

$$
R_{n}(x)=f(x)-T_{n}(x)
$$

the remainder of Taylor's polynomial.

Taylor's formula

Definition: Let $T_{n}(x)$ be Taylor's polynomial of function f at point x_{0}. Denote

$$
R_{n}(x)=f(x)-T_{n}(x)
$$

the remainder of Taylor's polynomial.

Theorem: Let f be $(n+1)$-times differentiable on interval / and let T_{n} be its Taylor polynomial at point $x_{0} \in I$, then

$$
\begin{gathered}
\forall x \in I \quad \exists c \in\left(x, x_{0}\right)\left(\text { or } c \in\left(x_{0}, x\right) \text { resp. }\right) \text { such that } \\
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
\end{gathered}
$$

Taylor's formula

Definition: Let $T_{n}(x)$ be Taylor's polynomial of function f at point x_{0}. Denote

$$
R_{n}(x)=f(x)-T_{n}(x)
$$

the remainder of Taylor's polynomial.

Theorem: Let f be $(n+1)$-times differentiable on interval / and let T_{n} be its Taylor polynomial at point $x_{0} \in I$, then

$$
\begin{gathered}
\forall x \in I \quad \exists c \in\left(x, x_{0}\right)\left(\text { or } c \in\left(x_{0}, x\right) \text { resp. }\right) \text { such that } \\
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
\end{gathered}
$$

id est

$$
f(x)=T_{n}(x)+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

The last relation is called the Taylor formula.

Differential of function

Differential of function

Definition:

The difference of function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function Δf of two independent variables

$$
\Delta f\left(x_{0}, \Delta x\right)=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right) .
$$

Definition:

The differential of function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function $\mathrm{d} f$ of two independent variables

$$
\mathrm{d} f\left(x_{0}, \Delta x\right)=f^{\prime}\left(x_{0}\right) \Delta x
$$

Differential of function

Definition:

The difference of function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function Δf of two independent variables

$$
\Delta f\left(x_{0}, \Delta x\right)=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right) .
$$

Definition:

The differential of function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function $\mathrm{d} f$ of two independent variables

$$
\mathrm{d} f\left(x_{0}, \Delta x\right)=f^{\prime}\left(x_{0}\right) \Delta x
$$

Remarks: Difference $\Delta f=$ exact change of value. Differential $\mathrm{d} f=$ approximate change of value.
(approximation by tangent) The increment Δx can be also negative.

