Taylor polynomial. Differential.

Brook Taylor (1685-1731)

Taylor polynomial

Taylor polynomial

Recall: Polynomial of *n*-th degree $P_n(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, $a_i \in \mathbb{R}$, $a_n \neq 0$. easy to evaluate (Horner's method)

Our goal:

For a given function *f* and given point x_0 find a "simpler function" such that on a neighborhood of x_0 it has values "close" to f(x). It will be T_n .

Definition: Suppose that function *f* has *n* proper derivatives at point x_0 , then we define Taylor polynomial of the *n*-th degree of function *f* at point x_0 as

$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n.$$

$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

Remarks:

- It is polynomial of degree at most n.
- $f^{(k)}(x_0)$ are constants.
- **0**! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = $4 \cdot 3 \cdot 2 \cdot 1 = 24, \dots$
- **T_1** describes the tangent to the graph.

Assertion: For a Taylor polynomial T_n of function f at point x_0 the following holds true:

$$T_n(x_0) = f(x_0), \quad T'_n(x_0) = f'(x_0), \quad \dots, \quad T_n^{(n)}(x_0) = f^{(n)}(x_0).$$

$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

Remarks:

- It is polynomial of degree at most n.
- $f^{(k)}(x_0)$ are constants.
- **0**! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = $4 \cdot 3 \cdot 2 \cdot 1 = 24, \dots$
- **T_1** describes the tangent to the graph.

Assertion: For a Taylor polynomial T_n of function f at point x_0 the following holds true:

$$T_n(x_0) = f(x_0), \quad T'_n(x_0) = f'(x_0), \quad \dots, \quad T_n^{(n)}(x_0) = f^{(n)}(x_0).$$

Corollary: In neighborhood of x_0 , the Taylor polynomial is a good approximation of function f, i.e.

For $x \doteq x_0$ we have $f(x) \doteq T_n(x)$.

Definition: Let $T_n(x)$ be Taylor's polynomial of function *f* at point x_0 . Denote

$$\mathsf{R}_n(x) = f(x) - T_n(x)$$

the remainder of Taylor's polynomial.

Definition: Let $T_n(x)$ be Taylor's polynomial of function f at point x_0 . Denote

$$\mathsf{R}_n(x) = f(x) - T_n(x)$$

the remainder of Taylor's polynomial.

Theorem: Let *f* be (n+1)-times differentiable on interval *I* and let T_n be its Taylor polynomial at point $x_0 \in I$, then

$$\forall x \in I \;\; \exists c \in (x, x_0) \text{ (or } c \in (x_0, x) \text{ resp.) such that}$$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}.$$

Definition: Let $T_n(x)$ be Taylor's polynomial of function f at point x_0 . Denote

$$\mathsf{R}_n(x) = f(x) - T_n(x)$$

the remainder of Taylor's polynomial.

Theorem: Let *f* be (n+1)-times differentiable on interval *I* and let T_n be its Taylor polynomial at point $x_0 \in I$, then

$$\forall x \in I \;\; \exists c \in (x, x_0) \; (\; ext{or} \; c \in (x_0, x) \; ext{resp.} \;) \; ext{such that}$$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}.$$

id est

$$f(x) = T_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$

The last relation is called the Taylor formula.

Differential of function

Differential of function

Definition:

The difference of function $f : \mathbb{R} \to \mathbb{R}$ is a function Δf of two independent variables

$$\Delta f(x_0, \Delta x) = f(x_0 + \Delta x) - f(x_0).$$

Definition:

The differential of function $f : \mathbb{R} \to \mathbb{R}$ is a function df of two independent variables

 $\mathrm{d}f(x_0,\Delta x)=f'(x_0)\Delta x.$

Differential of function

Definition:

The difference of function $f : \mathbb{R} \to \mathbb{R}$ is a function Δf of two independent variables

$$\Delta f(x_0, \Delta x) = f(x_0 + \Delta x) - f(x_0).$$

Definition:

The differential of function $f : \mathbb{R} \to \mathbb{R}$ is a function df of two independent variables

 $\mathrm{d}f(x_0,\Delta x)=f'(x_0)\Delta x.$

Remarks: Difference Δf = exact change of value. Differential df = approximate change of value. (approximation by tangent) The increment Δx can be also negative.