Applications of integrals of functions of one real variable

Riemann definition of definite integral

Definition Let f be continuous on interval $\langle a, b\rangle$.
Let us consider equidistant partition of the interval $\langle a, b\rangle$ with n subintervals

$$
a=x_{0}<\cdots<x_{n-1}<x_{n}=b, \quad x_{i}-x_{i-1}=h .
$$

At each subinterval $\left\langle x_{i-1}, x_{i}\right\rangle$ let us choose arbitrary point $c_{i} \in$ $\left\langle x_{i-1}, x_{i}\right\rangle$. Then the sum

$$
S_{n}(f)=\sum_{i=1}^{n} f\left(c_{i}\right) \cdot\left(x_{i}-x_{i-1}\right)=h \cdot \sum_{i=1}^{n} f\left(c_{i}\right)
$$

is called Riemann integral sum.
Riemann integral $=\lim _{n \rightarrow \infty} S_{n}(f)$.

Riemann definition of definite integral

Definition Let f be continuous on interval $\langle a, b\rangle$.
Let us consider equidistant partition of the interval $\langle a, b\rangle$ with n subintervals

$$
a=x_{0}<\cdots<x_{n-1}<x_{n}=b, \quad x_{i}-x_{i-1}=h .
$$

At each subinterval $\left\langle x_{i-1}, x_{i}\right\rangle$ let us choose arbitrary point $c_{i} \in$ $\left\langle x_{i-1}, x_{i}\right\rangle$. Then the sum

$$
S_{n}(f)=\sum_{i=1}^{n} f\left(c_{i}\right) \cdot\left(x_{i}-x_{i-1}\right)=h \cdot \sum_{i=1}^{n} f\left(c_{i}\right)
$$

is called Riemann integral sum.
Riemann integral $=\lim _{n \rightarrow \infty} S_{n}(f)$.
Theorem: Let f be continuous on $\langle a, b\rangle$, then there exists $\lim _{n \rightarrow \infty} S_{n}(f)$ and the limit value does not depend on the choice of points $c_{i} \in\left\langle x_{i-1}, x_{i}\right\rangle, i=1, \ldots, n$.

Riemann integral

Remark: Here, c_{i} the left endpoint of the interval

Riemann definition of definite integral

Definition: Let f be continuous on $\langle a, b\rangle$. Riemann integral of f from a to b is defined as

$$
(\mathcal{R}) \int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} S_{n}(f)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \cdot h
$$

Riemann definition of definite integral

Definition: Let f be continuous on $\langle a, b\rangle$. Riemann integral of f from a to b is defined as

$$
(\mathcal{R}) \int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} S_{n}(f)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \cdot h
$$

Recall: For conitnuous functions we already defined Newton integral as

$$
(\mathcal{N}) \int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)
$$

Riemann definition of definite integral

Definition: Let f be continuous on $\langle a, b\rangle$. Riemann integral of f from a to b is defined as

$$
(\mathcal{R}) \int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} S_{n}(f)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \cdot h
$$

Recall: For conitnuous functions we already defined Newton integral as

$$
(\mathcal{N}) \int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)
$$

Theorem: Let f be continuous on interval $\langle a, b\rangle$, then there exists Newton as well as Riemann integrals and their values are equal, id est:

$$
(\mathcal{R}) \int_{a}^{b} f(x) \mathrm{d} x=(\mathcal{N}) \int_{a}^{b} f(x) \mathrm{d} x
$$

Usage:

Riemann integral is useful for deriving general application formulas with integrals.
Newton integral is useful for calculating the ingrals.

Geometrical applications

■ Area of planar figure bounded by graphs of functions

Geometrical applications

■ Area of planar figure bounded by graphs of functions

- length of a curve given by parametric equations

$$
x=g(t), \quad y=f(t), \quad t \in\langle a, b\rangle
$$

$$
\ell=\int_{a}^{b} \sqrt{\left(g^{\prime}(t)\right)^{2}+\left(f^{\prime}(t)\right)^{2}} \mathrm{~d} t
$$

Geometrical applications

- Area of planar figure bounded by graphs of functions

■ length of a curve given by parametric equations

$$
\begin{aligned}
x=g(t), \quad y= & f(t), \quad t \in\langle a, b\rangle: \\
& \ell=\int_{a}^{b} \sqrt{\left(g^{\prime}(t)\right)^{2}+\left(f^{\prime}(t)\right)^{2}} \mathrm{~d} t
\end{aligned}
$$

$■$ length of a graph of a function $y=f(x), \quad x \in\langle a, b\rangle$:

$$
\ell=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x
$$

Geometrical applications

■ Area of planar figure bounded by graphs of functions

- length of a curve given by parametric equations

$$
\begin{aligned}
x=g(t), \quad y= & f(t), \quad t \in\langle a, b\rangle: \\
& \quad \ell=\int_{a}^{b} \sqrt{\left(g^{\prime}(t)\right)^{2}+\left(f^{\prime}(t)\right)^{2}} \mathrm{~d} t
\end{aligned}
$$

- length of a graph of a function $y=f(x), \quad x \in\langle a, b\rangle$:

$$
\ell=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x
$$

■ Volume of solid of revolution, created by revolving a surface bounded by graph of a continuous function f defined on $\langle a, b\rangle$, and lines $x=a, x=b, y=0$ around x-axis:

$$
V=\pi \int_{a}^{b} f^{2}(x) \mathrm{d} x
$$

Volume of solid of revolution -idea of the proof

Volume of one disk (cylinder) $\ldots S_{p} \cdot v=\pi r^{2} v=\pi f\left(c_{i}\right)^{2} h$
Volume of n disks $=\sum_{i=1}^{n}\left(\pi f\left(c_{i}\right)^{2} h\right)=\pi \sum_{i=1}^{n}\left(f^{2}\left(c_{i}\right) h\right) \doteq$ volume of the solid
volume of the solid
precisely $V=\lim _{n \rightarrow \infty} \pi \sum_{i=1}^{n}\left(f^{2}\left(c_{i}\right) h\right)=\pi \int_{a}^{b} f^{2}(x) \mathrm{d} x$
Riemann sum for f^{2}

Mean value theorem for definite integrals

Definition: Mean value of continuous function f on interval $\langle a, b\rangle$ is defined as

$$
\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x .
$$

Mean value theorem for definite integrals

Definition: Mean value of continuous function f on interval $\langle a, b\rangle$ is defined as

$$
\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x .
$$

Theorem: Let f be continuous on interval $\langle a, b\rangle$, then existujethere exists $c \in(a, b)$ such that $f(c)=\bar{f}$.

Physical applications

■ Work W by non-constant force \vec{F} acting along a segment $\overline{A B}, A=[a ; 0], B=[b ; 0]$

$$
W=\int_{a}^{b} F(x) \mathrm{d} x
$$

Physical applications

- Work W by non-constant force \vec{F} acting along a segment $\widehat{A B}, A=[a ; 0], B=[b ; 0]$

$$
W=\int_{a}^{b} F(x) d x
$$

- Work W by a gas enclosed in a cylinder with piston going from position $x=a$ to position $x=b$.

$$
W=\int_{V_{a}}^{V_{b}} p(V) d V
$$

