Linear differential equations of $1^{\text {st }}$ and $\mathbf{2}^{\text {nd }}$ order with constant coefficients and "special"right hand side

LDE of the $2^{\text {nd }}$ order

Linear differential equation of the $2^{\text {nd }}$ order with constant coefficients is equation of the form

$$
k_{0} \cdot y^{\prime \prime}(x)+k_{1} \cdot y^{\prime}(x)+k_{2} \cdot y(x)=b(x)
$$

where $k_{0}, k_{1}, k_{2} \in \mathbb{R}$ are constants, $k_{0} \neq 0$, and b given function.
Theorem: General solution to the NLDE of the $2^{\text {nd }}$ order can be written in the form

$$
y=y_{H}+y_{P}
$$

where y_{H} are all solutions of HLDE and
y_{p} is one arbitrary particular solution to NLDE.
Moreover, the number of linearly independent solutions to the HLDE (the number of integration constants) is equal to the order of the equation (=2).

Structure of the solutions of LDEs

The general approach the same as of the LDE of the first order: Step 1 Determine all solutions y_{H} of the corresponding HLDE

$$
k_{0} \cdot y^{\prime \prime}(x)+k_{1} \cdot y^{\prime}(x)+k_{2} \cdot y(x)=0
$$

Step 2 Determine one arbitrary solution y_{p} to the original equation

$$
k_{0} \cdot y^{\prime \prime}(x)+k_{1} \cdot y^{\prime}(x)+k_{2} \cdot y(x)=b(x)
$$

Step 3 all solutions $\ldots y_{N}\left(x, C_{1}, C_{2}\right)=y_{H}\left(x, C_{1}, C_{2}\right)+y_{p}(x)$.

Step 1 - General solution to the corresponding HLDE

$$
\begin{gathered}
k_{0} \cdot y^{\prime \prime}(x)+k_{1} \cdot y^{\prime}(x)+k_{2} \cdot y(x)=0 \\
\downarrow
\end{gathered}
$$

characteristic equation: $\quad k_{0} \lambda^{2}+k_{1} \lambda+k_{2}=0$
Find the roots $\lambda_{1,2}$ of this quadratic equation.
Consider the three possibilities:
$\square D>0, \lambda_{1} \neq \lambda_{2} \in \mathbb{R} \Rightarrow y_{H}(x)=C_{1} \mathrm{e}^{\lambda_{1} x}+C_{2} \mathrm{e}^{\lambda_{2} x}$,
■ $D=0, \lambda_{1}=\lambda_{2}=\lambda \in \mathbb{R} \Rightarrow y_{H}(x)=C_{1} \mathrm{e}^{\lambda x}+C_{2} x \mathrm{e}^{\lambda x}$,
■ $D<0, \lambda_{1,2}=a \pm i b \in \mathbb{C}$
$\Rightarrow y_{H}(x)=C_{1} \mathrm{e}^{a x} \cos (b x)+C_{2} \mathrm{e}^{a x} \sin (b x)$,
(in all cases $x \in \mathbb{R}, C_{1}, C_{2} \in \mathbb{R}$)

Step 2 - the method of undetermined coefficients

The method is applicable for $1^{\text {st }}$ and $2^{\text {nd }}$ order linear differential equations with

- constant coefficients and
■ "special" right-hand side
■ has so called finite family of derivatives
Example 1: $y^{\prime \prime}+2 y^{\prime}-y=x^{2}$
Example 2: $y^{\prime}+2 y=\sin x$
Example 3: $y^{\prime \prime}+y^{\prime}=x$

For equation

$$
a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=\mathrm{e}^{\alpha x}(P(x) \sin (\beta x)+Q(x) \cos (\beta x))
$$

there exists a solution y_{p} of this NLDE in the form

$$
y_{p}(x)=x^{k} \mathrm{e}^{\alpha x}(R(x) \sin (\beta x)+S(x) \cos (\beta x)) \text {, where }
$$

- $k \in\{0,1,2\}$ is the multiplicity of $\alpha+i \beta$ as a root of characteristic equation, id est
$\mathrm{k}=0$, if $\alpha+i \beta$ is not a root of characteristic equation
$\mathrm{k}=1$, if $\alpha+i \beta$ is a single root of characteristic equation
$\mathrm{k}=2$, if $\alpha+i \beta$ is double root of the characteristic
- R, S - polynomials of degree at most max\{dg. P, dg. $Q\}$

Thus, we guess roughly the form of y_{p}. The coefficients of polynomials R, S need to be determined so that y_{p} is a solution to NLDE.
Step 3 General solution to NLDE:

$$
y(x)=y_{H}(x)+y_{p}(x)
$$

