Requirements for assessment and exam

Assessment

- active participation on exercises
- two assessment tests

maximal amount of points you can get is 200.

- $\blacksquare \ge 100 \text{ points} \rightarrow \text{assessed}$
- 60 99 points \rightarrow
 - \rightarrow one trial for summary test
- \blacksquare < 60 points \rightarrow one has to repeat the subject

Dates: 1st test - Friday 25th October, 2nd - Friday 29th November.

Requirements for assessment and exam

Assessment

- active participation on exercises
- two assessment tests

maximal amount of points you can get is 200.

- $\blacksquare \ge 100 \text{ points} \rightarrow \text{assessed}$
- 60 99 points \rightarrow
 - ightarrow one trial for summary test
- < 60 points \rightarrow one has to repeat the subject

Dates: 1st test - Friday 25th October, 2nd - Friday 29th November.

Exam - 3 trials

- 1) written part \geq 50p from 100p \rightarrow oral part
- 2) oral part get 2-3 topics (written preparation)

Electronic materials

- https://e-learning.vscht.cz/ in Czech
- support text on http://web.vscht.cz/axmanns/

Electronic materials

- https://e-learning.vscht.cz/ in Czech
- support text on http://web.vscht.cz/axmanns/
- Your questions should be directed to (administrative or mathematical)

me

- personally
- building C, 2nd floor, C213
- email: axmanns@vscht.cz

Electronic materials

- https://e-learning.vscht.cz/ in Czech
- support text on http://web.vscht.cz/axmanns/
- Your questions should be directed to (administrative or mathematical)

me

- personally
- building C, 2nd floor, C213
- email: axmanns@vscht.cz
- lecturer of the exercises (Zikmundová, Pokorný)

Electronic materials

- https://e-learning.vscht.cz/ in Czech
- support text on http://web.vscht.cz/axmanns/
- Your questions should be directed to (administrative or mathematical)

me

- personally
- building C, 2nd floor, C213
- email: axmanns@vscht.cz
- lecturer of the exercises (Zikmundová, Pokorný)
- FB ... group

Terminology a notation

Logical connectives (operators):

- \neg ... negation; it is not true that
- $\wedge\ldots$ conjuction; and (at the same time)
- $\lor \dots$ disjunction; and or
- $\Rightarrow \dots \text{implication; if } \dots \text{then }, \quad \text{assumption} \Rightarrow \text{conclusion}$
- $\Leftrightarrow \dots$ equivalence; if and only if (iff)

Quantifiers:

- $\forall \dots$ for all, for every
- \exists . . . there exists (at least one)

Set symbols:

- \in ... is an element
- $\subset, \subseteq \ldots$ is a subset of
- $\cup \dots$ union
- $\cap \dots$ intersection

 $M = \{x \in X \mid \text{properties}\} \dots$ definition of the set $M \subseteq X$

Definition - describing a new concept using already known

Theorem - assertion, which can be logically deduced from definitions, axioms or already proven assertions. Usually they have the form of implication (\Rightarrow) nebo equivalence (\Leftrightarrow).

Proof = deduction. (Often will be skipped.)

Example:

Definition: Let $a, b, c \in \mathbb{R}$, $a \neq 0$. We say that equation in the form $ax^2 + bx + c = 0$, is a quadratic equation.

Theorem: If $b^2 - 4ac > 0$, $a \neq 0$, then the quadratic equation $ax^2 + bx + c = 0$, has two roots in the form

$$x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

Proof: calculation