Graphing plots of functions

Examining the monotony

Theorem:

Let f be continuous and differentiable function on interval l. Then
(i) if $f^{\prime}(x)>0$ on I, then f is increasing on I.
(ii) if $f^{\prime}(x) \geq 0$ on I, then f is non-decreasing on I.
(iii) if $f^{\prime}(x)<0$ on I, then f is decreasing on I.
(iv) if $f^{\prime}(x) \leq 0$ on I, then f non-increasing on I.
(v) if $f^{\prime}(x)=0$ on I, then f is constant on I.

Be careful: The assertion holds for intervals only!
E.g. for $f(x)=\frac{1}{x}, f^{\prime}(x)=-\frac{1}{x^{2}}<0$ on $(-\infty, 0) \cup(0, \infty)$, but f is not increasing on $(-\infty, 0)(0, \infty)$.

Corollary:

We determine the intervals, where f increases or decreases, respectively (so called intervals of monotonicity).

Local extrema

Definition: We say that function f has at the point x_{0} local maximum, if $\exists \mathcal{P}\left(x_{0}\right)$ such that

$$
\forall x \in \mathcal{P}\left(x_{0}\right): f(x) \leq f\left(x_{0}\right) .
$$

Analogically: We say that function f has at the point x_{0} local minimum, if $\exists \mathcal{P}\left(x_{0}\right)$ such that

$$
\forall x \in \mathcal{P}\left(x_{0}\right): f(x) \geq f\left(x_{0}\right)
$$

Remark: If a strict inequality is satisfied we talk about strict local maximum (or minimum).

Local extrema ... common name for local minimums and maximums.

Finding local extrema

Theorem: Suppose that f is continuous on (a, b) and $x_{0} \in$ (a, b).
(i) If $f^{\prime}(x)>0$ on $\left(a, x_{0}\right)$ and $f^{\prime}(x)<0$ on $\left(x_{0}, b\right)$, then f has at point x_{0} a strict local maximum.
(ii) If $f^{\prime}(x)<0$ on $\left(a, x_{0}\right)$ and $f^{\prime}(x)>0$ on $\left(x_{0}, b\right)$, then f has at point x_{0} a strict local minimum.
(iii) If $f^{\prime}\left(x_{0}\right) \neq 0$, then f does not have a local extreme at x_{0}.
points "suspicious" $\quad\left\{f^{\prime}\left(x_{0}\right)=0 \ldots\right.$ stationary points of being local extrema $\quad f^{\prime}\left(x_{0}\right)$ does not exist

Global extrema

Definition: We say that function f has a global maximum at point $x_{0} \in D(f)$, if

$$
\forall x \in D(f): f(x) \leq f\left(x_{0}\right)
$$

Analogically: We say that function f has a global minimum at point $x_{0} \in D(f)$, if

$$
\forall x \in D(f): f(x) \geq f\left(x_{0}\right)
$$

We refer to the number $f\left(x_{0}\right)$ as maximal (or minimal) value of function f.

Remark: Not all function possess maximal and minimal value.

Theorem: Let f be function continuous on $\langle a, b\rangle$, then f attains its maximal and minimal value on $\langle a, b\rangle$.

Remark: Maximal and minimal values can be attained either at local extrema or at the endpoints of the domain of definition.

Convex and concave functions

Definition: Let f be function defined on interval I.
1 If for any triple $x_{1}<x_{2}<x_{3}, x_{1}, x_{2}, x_{3} \in I$, point
$P_{2}=\left[x_{2}, f\left(x_{2}\right)\right]$ lies below or on the line connecting points
$P_{1}=\left[x_{1}, f\left(x_{1}\right)\right]$ and $P_{3}=\left[x_{3}, f\left(x_{3}\right)\right]$, we say that the function is convex on l.
2 If point P_{2} always lies above or on the line, we say that the function is concave on l.

Theorem:

Let function f be twice differentiable on interval I. Then it holds:
(i) If $f^{\prime \prime}(x) \geq 0$ on I, then f is convex on I.
(ii) If $f^{\prime \prime}(x) \leq 0$ on I, then f is concave on I.

Theorem : Let f be defined on (a, b) and $x_{0} \in(a, b)$. If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then f has local minimum at point x_{0}.
If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$, then f has local maximum at point

Inflection points

Definition: Let f be continuous on $(a, b), x_{0} \in(a, b)$ and let $f^{\prime}\left(x_{0}\right)$ exist (proper or improper). If f is convex on $\left(a, x_{0}\right)$ and concave on $\left(x_{0}, b\right)$ (or vice versa), then we say that f has inflection at point x_{0} or that graph of function f has at point [$\left.x_{0}, f\left(x_{0}\right)\right]$ inflection point.

Theorem: Let f be twice differentiable function on interval (a, b).
If $f^{\prime \prime}(x)>0$ on $\left(a, x_{0}\right)$ and $f^{\prime \prime}(x)<0$ on $\left(x_{0}, b\right)$ (or vice versa), then f has inflection at point x_{0}.

Asymptots

Definition: If

$$
\lim _{x \rightarrow a+} f(x)= \pm \infty \text { or } \lim _{x \rightarrow a-} f(x)= \pm \infty
$$

then the line $x=a$ is called vertical asymptote of the graph of f.

Definition: If

$$
\lim _{x \rightarrow \infty} f(x)=b \in \mathbb{R} \text { or } \lim _{x \rightarrow-\infty} f(x)=b \in \mathbb{R}
$$

then the line $y=b$ is called horizontal asymptote of the graph of f at ∞ (or $-\infty$ respectively).

Graphing function

1 Determine $D(f)$
2 Parity, periodicity.
3 Intersection points with axes, if possible.
4 Continuity, (one-sided) limits at endpoints of $D(f)$ and at the points of discontinuity \Rightarrow vertical and horizonatl asymptots
$5 f^{\prime}(x) \Rightarrow$ monotonicity, local extrema.
$6 f^{\prime \prime}(x) \Rightarrow$ convexity, concavity, inflection.
7 Sketch the graph of f a determine $\operatorname{Im}(f)$.

$$
f(x)=\frac{x}{\ln x}
$$

Numerical solution of equation $f(x)=0$.

Recall Root of equation is such number α, for which the equation is satisfied (here $f(\alpha)=0$).

1 determine the number of roots (e.g. by graph)
2 for each root determine the so-called separation interval
Definition: Suppose that in interval $\langle a, b\rangle$ there exists exactly one root of equation, then we call $\langle a, b\rangle$ a separation interval.

Theorem:

Let f be continuous on $\langle a, b\rangle$ and let $f(a) \cdot f(b)<0$, then there is at least one root of equation $f(x)=0$ in interval (a, b).
If additionally $f^{\prime}(x) \neq 0$ for all $x \in\langle a, b\rangle$, then there is exactly one root of equation $f(x)=0$ in interval (a, b).
3 find approximately root α - lot of root-finding methods - e.g.
■ bisection method ... simple naive method

- secant method

■ by Newton method
... numerical method for approximating the solution

Newton method (method of tangents)

Let f continuous twice differentiable function on (a, b) and let α be a root of equation $f(x)=0$ in interval $\langle a, b\rangle$
Choose $x_{0} \in\{a, b\}$ such that $f\left(x_{0}\right) \cdot f^{\prime \prime}\left(x_{0}\right)>0$. construct sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$:

$$
x_{n+1}^{n=0}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

$\left\{x_{n}\right\}_{n=0}^{\infty} \ldots$ sequence of approximations of root α. $x_{n} \ldots n$-th approximation of root α.

Theorem: Let f be continuous on $\langle a, b\rangle$. If the following assumptions hold
(i) $f(a) \cdot f(b)<0$
(ii) $f^{\prime}(x) \neq 0$ for all $\forall x \in\langle a, b\rangle$
(iii) $f^{\prime \prime}(x) \neq 0$ for all $\forall x \in\langle a, b\rangle$
(iv) $x_{0} \in\{a, b\}, f\left(x_{0}\right) \cdot f^{\prime \prime}\left(x_{0}\right)>0$,
then the Newton method converges, i.e. for the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ it holds $\lim _{n \rightarrow \infty} x_{n}=\alpha$.

