
Graphing plots of functions



Examining the monotony

Theorem:
Let f be continuous and differentiable function on interval I.
Then

(i) if f ′(x) > 0 on I, then f is increasing on I.
(ii) if f ′(x) ≥ 0 on I, then f is non-decreasing on I.
(iii) if f ′(x) < 0 on I, then f is decreasing on I.
(iv) if f ′(x) ≤ 0 on I, then f non-increasing on I.
(v) if f ′(x) = 0 on I, then f is constant on I.

Be careful: The assertion holds for intervals only!
E.g. for f (x) = 1

x , f ′(x) = − 1
x2 < 0 on (−∞,0) ∪ (0,∞),

but f is not increasing on (((((((((hhhhhhhhh(−∞,0) ∪ (0,∞).

Corollary:
We determine the intervals, where f increases or decreases,
respectively (so called intervals of monotonicity).



Local extrema

Definition: We say that function f has at the point x0 local
maximum, if ∃P(x0) such that

∀ x ∈ P(x0) : f (x) ≤ f (x0).

Analogically: We say that function f has at the point x0 local
minimum, if ∃P(x0) such that

∀ x ∈ P(x0) : f (x) ≥ f (x0).

Remark: If a strict inequality is satisfied we talk about strict
local maximum (or minimum).

Local extrema . . . common name for local minimums and
maximums.



Finding local extrema

Theorem: Suppose that f is continuous on (a,b) and x0 ∈
(a,b).

(i) If f ′(x) > 0 on (a, x0) and f ′(x) < 0 on (x0,b), then f
has at point x0 a strict local maximum.

(ii) If f ′(x) < 0 on (a, x0) and f ′(x) > 0 on (x0,b), then f
has at point x0 a strict local minimum.

(iii) If f ′(x0) 6= 0, then f does not have a local extreme at x0.

points "suspicious"
of being local extrema

{
f ′(x0) = 0 . . . stationary points
f ′(x0) does not exist



Global extrema

Definition: We say that function f has a global maximum at
point x0 ∈ D(f ), if

∀ x ∈ D(f ) : f (x) ≤ f (x0) .

Analogically: We say that function f has a global minimum at
point x0 ∈ D(f ), if

∀ x ∈ D(f ) : f (x) ≥ f (x0) .

We refer to the number f (x0) as maximal (or minimal) value of
function f .

Remark: Not all function possess maximal and minimal value.

Theorem: Let f be function continuous on 〈a,b〉, then f attains
its maximal and minimal value on 〈a,b〉.

Remark: Maximal and minimal values can be attained either at
local extrema or at the endpoints of the domain of definition.



Convex and concave functions

Definition: Let f be function defined on interval I.
1 If for any triple x1 < x2 < x3, x1, x2, x3 ∈ I, point

P2 = [x2, f (x2)] lies below or on the line connecting points
P1 = [x1, f (x1)] and P3 = [x3, f (x3)], we say that the
function is convex on I.

2 If point P2 always lies above or on the line, we say that the
function is concave on I.

Theorem:
Let function f be twice differentiable on interval I. Then it holds:

(i) If f ′′(x) ≥ 0 on I, then f is convex on I.
(ii) If f ′′(x) ≤ 0 on I, then f is concave on I.

Theorem : Let f be defined on (a,b) and x0 ∈ (a,b).
If f ′(x0) = 0 and f ′′(x0) > 0, then f has local minimum at point
x0.
If f ′(x0) = 0 and f ′′(x0) < 0, then f has local maximum at point
x0.



Inflection points

Definition: Let f be continuous on (a,b), x0 ∈ (a,b) and let
f ′(x0) exist (proper or improper). If f is convex on (a, x0) and
concave on (x0,b) (or vice versa), then we say that f has in-
flection at point x0 or that graph of function f has at point
[x0, f (x0)] inflection point.

Theorem: Let f be twice differentiable function on interval
(a,b).
If f ′′(x) > 0 on (a, x0) and f ′′(x) < 0 on (x0,b) (or vice versa),
then f has inflection at point x0.



Asymptots

Definition: If

lim
x→a+

f (x) = ±∞ or lim
x→a−

f (x) = ±∞

then the line x = a is called vertical asymptote of the graph
of f .

Definition: If

lim
x→∞

f (x) = b ∈ R or lim
x→−∞

f (x) = b ∈ R

then the line y = b is called horizontal asymptote of the
graph of f at∞ (or −∞ respectively).



Graphing function

1 Determine D(f )
2 Parity, periodicity.
3 Intersection points with axes, if possible.
4 Continuity, (one-sided) limits at endpoints of D(f ) and at

the points of discontinuity ⇒ vertical and horizonatl
asymptots

5 f ′(x) ⇒ monotonicity, local extrema.
6 f ′′(x) ⇒ convexity, concavity, inflection.
7 Sketch the graph of f a determine Im(f ).



f (x) =
x

ln x



Numerical solution of equation f (x) = 0 .

Recall Root of equation is such number α, for which the equation is
satisfied (here f (α) = 0).

1 determine the number of roots (e.g. by graph)

2 for each root determine the so-called separation interval
Definition: Suppose that in interval 〈a,b〉 there exists exactly one
root of equation, then we call 〈a,b〉 a separation interval.

Theorem:
Let f be continuous on 〈a,b〉 and let f (a) · f (b) < 0, then there is
at least one root of equation f (x) = 0 in interval (a,b) .
If additionally f ′(x) 6= 0 for all x ∈ 〈a,b〉, then there is exactly one
root of equation f (x) = 0 in interval (a,b) .

3 find approximately root α - lot of root-finding methods - e.g.
bisection method . . . simple naive method
secant method
by Newton method

. . . numerical method for approximating the solution



Newton method (method of tangents)
Let f continuous twice differentiable function on (a,b) and let α be a
root of equation f (x) = 0 in interval 〈a,b〉

Choose x0 ∈ {a,b} such that f (x0) · f ′′(x0) > 0.
construct sequence {xn}∞n=0:

xn+1 = xn −
f (xn)

f ′(xn)
.

{xn}∞n=0 . . . sequence of approximations of root α.
xn . . . n−th approximation of root α.

Theorem: Let f be continuous on 〈a,b〉. If the following assumptions
hold

(i) f (a) · f (b) < 0

(ii) f ′(x) 6= 0 for all ∀ x ∈ 〈a,b〉

(iii) f ′′(x) 6= 0 for all ∀ x ∈ 〈a,b〉

(iv) x0 ∈ {a,b}, f (x0) · f ′′(x0) > 0,

then the Newton method converges, i.e. for the sequence {xn}∞n=0 it
holds lim

n→∞
xn = α.


