Graphing plots of functions

Examining the monotony

Theorem:

Let *f* be continuous and differentiable function on interval *I*. Then

(i) if f'(x) > 0 on *I*, then *f* is increasing on *I*.

- (ii) if $f'(x) \ge 0$ on *I*, then *f* is non-decreasing on *I*.
- (iii) if f'(x) < 0 on *I*, then *f* is decreasing on *I*.
- (iv) if $f'(x) \leq 0$ on *I*, then *f* non-increasing on *I*.
- (v) if f'(x) = 0 on *I*, then *f* is constant on *I*.

Be careful: The assertion holds for intervals only! E.g. for $f(x) = \frac{1}{x}$, $f'(x) = -\frac{1}{x^2} < 0$ on $(-\infty, 0) \cup (0, \infty)$, but *f* is not increasing on $(-\infty, 0) \cup (0, \infty)$.

Corollary:

We determine the intervals, where *f* increases or decreases, respectively (so called intervals of monotonicity).

Definition: We say that function *f* has at the point x_0 local maximum, if $\exists \mathcal{P}(x_0)$ such that

 $\forall x \in \mathcal{P}(x_0) : f(x) \leq f(x_0).$

Analogically: We say that function *f* has at the point x_0 local minimum, if $\exists \mathcal{P}(x_0)$ such that $\forall x \in \mathcal{P}(x_0) : f(x) \ge f(x_0).$

Remark: If a strict inequality is satisfied we talk about strict local maximum (or minimum).

Local extrema . . . common name for local minimums and maximums.

Finding local extrema

Theorem: Suppose that *f* is continuous on (a, b) and $x_0 \in (a, b)$.

- (i) If f'(x) > 0 on (a, x_0) and f'(x) < 0 on (x_0, b) , then f has at point x_0 a strict local maximum.
- (ii) If f'(x) < 0 on (a, x_0) and f'(x) > 0 on (x_0, b) , then f has at point x_0 a strict local minimum.

(iii) If $f'(x_0) \neq 0$, then *f* does not have a local extreme at x_0 .

points "suspicious" $\begin{cases} f'(x_0) = 0 \dots \text{ stationary points} \\ f'(x_0) \text{ does not exist} \end{cases}$

Global extrema

Definition: We say that function *f* has a global maximum at point $x_0 \in D(f)$, if

 $\forall x \in D(f) : f(x) \leq f(x_0).$

Analogically: We say that function *f* has a global minimum at point $x_0 \in D(f)$, if

 $\forall x \in D(f) : f(x) \geq f(x_0).$

We refer to the number $f(x_0)$ as maximal (or minimal) value of function *f*.

Remark: Not all function possess maximal and minimal value.

Theorem: Let *f* be function continuous on $\langle a, b \rangle$, then *f* attains its maximal and minimal value on $\langle a, b \rangle$.

Remark: Maximal and minimal values can be attained either at local extrema or at the endpoints of the domain of definition.

Convex and concave functions

Definition: Let *f* be function defined on interval *I*.

- 1 If for any triple $x_1 < x_2 < x_3$, x_1 , x_2 , $x_3 \in I$, point $P_2 = [x_2, f(x_2)]$ lies below or on the line connecting points $P_1 = [x_1, f(x_1)]$ and $P_3 = [x_3, f(x_3)]$, we say that the function is convex on *I*.
- 2 If point P_2 always lies above or on the line, we say that the function is concave on *I*.

Theorem:

Let function *f* be twice differentiable on interval *I*. Then it holds:

- (i) If $f''(x) \ge 0$ on *I*, then *f* is convex on *I*.
- (ii) If $f''(x) \le 0$ on *I*, then *f* is concave on *I*.

Theorem : Let *f* be defined on (a, b) and $x_0 \in (a, b)$. If $f'(x_0) = 0$ and $f''(x_0) > 0$, then *f* has local minimum at point x_0 . If $f'(x_0) = 0$ and $f''(x_0) < 0$, then *f* has local maximum at point **Definition:** Let *f* be continuous on (a, b), $x_0 \in (a, b)$ and let $f'(x_0)$ exist (proper or improper). If *f* is convex on (a, x_0) and concave on (x_0, b) (or vice versa), then we say that *f* has inflection at point x_0 or that graph of function *f* has at point $[x_0, f(x_0)]$ inflection point.

Theorem: Let *f* be twice differentiable function on interval (a, b). If f''(x) > 0 on (a, x_0) and f''(x) < 0 on (x_0, b) (or vice versa), then *f* has inflection at point x_0 .

Asymptots

Definition: If $\lim_{x \to a+} f(x) = \pm \infty \text{ or } \lim_{x \to a-} f(x) = \pm \infty$ then the line x = a is called vertical asymptote of the graph of *f*.

Definition: If

$$\lim_{x \to \infty} f(x) = b \in \mathbb{R} ext{ or } \lim_{x \to -\infty} f(x) = b \in \mathbb{R}$$

then the line y = b is called horizontal asymptote of the graph of *f* at ∞ (or $-\infty$ respectively).

Graphing function

- 1 Determine D(f)
- 2 Parity, periodicity.
- 3 Intersection points with axes, if possible.
- 4 Continuity, (one-sided) limits at endpoints of D(f) and at the points of discontinuity ⇒ vertical and horizonatl asymptots
- 5 $f'(x) \Rightarrow$ monotonicity, local extrema.
- 6 $f''(x) \Rightarrow$ convexity, concavity, inflection.
- **7** Sketch the graph of f a determine Im(f).

$$f(x) = \frac{x}{\ln x}$$

Numerical solution of equation f(x) = 0.

Recall Root of equation is such number α , for which the equation is satisfied (here $f(\alpha) = 0$).

- determine the number of roots (e.g. by graph)
- 2 for each root determine the so-called separation interval

Definition: Suppose that in interval $\langle a, b \rangle$ there exists exactly one root of equation, then we call $\langle a, b \rangle$ a separation interval.

Theorem:

Let *f* be continuous on $\langle a, b \rangle$ and let $f(a) \cdot f(b) < 0$, then there is at least one root of equation f(x) = 0 in interval (a, b). If additionally $f'(x) \neq 0$ for all $x \in \langle a, b \rangle$, then there is exactly one root of equation f(x) = 0 in interval (a, b).

- **3** find approximately root α lot of root-finding methods e.g.
 - bisection method ... simple naive method
 - secant method
 - by Newton method

... numerical method for approximating the solution

Newton method (method of tangents)

Let *f* continuous twice differentiable function on (a, b) and let α be a root of equation f(x) = 0 in interval $\langle a, b \rangle$

Choose $x_0 \in \{a, b\}$ such that $f(x_0) \cdot f''(x_0) > 0$. construct sequence $\{x_n\}_{n=0}^{\infty}$:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

 ${x_n}_{n=0}^{\infty}$... sequence of approximations of root α . $x_n \dots n$ —th approximation of root α .

Theorem: Let *f* be continuous on $\langle a, b \rangle$. If the following assumptions hold

- (i) $f(a) \cdot f(b) < 0$
- (ii) $f'(x) \neq 0$ for all $\forall x \in \langle a, b \rangle$
- (iii) $f''(x) \neq 0$ for all $\forall x \in \langle a, b \rangle$

(iv)
$$x_0 \in \{a, b\}, f(x_0) \cdot f''(x_0) > 0,$$

then the Newton method converges, i.e. for the sequence $\{x_n\}_{n=0}^{\infty}$ it holds $\lim_{n\to\infty} x_n = \alpha$.