Real functions

Function of one real variable

Definition: Suppose $M \subset \mathbb{R}$. If we assign for each $x \in M$ **uniquely** by a mapping *f* some $y \in \mathbb{R}$, we say that *y* is function of *x*.

x ... independent variable (input)
y ... dependent variable (output)

 $M = D(f) \dots \text{domain of definition } f$ $Im(f) = H(f) = \{y \in \mathbb{R} | y = f(x), x \in D(f)\} \dots \text{range, image } f$

Definition: graph(f) = { $(x, f(x)) \in \mathbb{R}^2 | x \in D(f)$ }

Graph *f* is a set of ordered pairs (x, f(x)), set of points in a plane.

Examples of graphs

Price of Phillip Morris shares during 2002

Examples of graphs

Price of Phillip Morris shares during 2002

Measured temperature on a given place during 24 hours

Functions can be specified

- by formula
- by graph
- table, algorithm, ...

The domain of the definition is an integral part of definition of the function. If it is not specified, we consider the so called natural domain of definition.

For all functions you need to know D(f), Im(f), distinguished values and limits (we will see later)!!!

HW - Table I

Operations with functions

Sum and difference of functions $h = f \pm g$: $h(x) = f(x) \pm g(x)$

Product of functions $h = f \cdot g$: $h(x) = f(x) \cdot g(x)$

- Quotient of functions $h = \frac{f}{g}$: $h(x) = \frac{f(x)}{g(x)}$
- Composition of functions $h = g \circ f$: $h(x) = (g \circ f)(x) = g(f(x))$

g - outer function, f - inner function

Remark: Generally $g \circ f \neq f \circ g$. (e.g. $\cos^2(x) \neq \cos(x^2)$)

Properties of functions - injectivity

Definition: Function *f* is injective on $M \subseteq D(f)$, whenever for each pair $x_1, x_2 \in M$ it holds

 $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2).$

Remark: We say that *f* is injective, if it is injective on D(f).

Properties of functions - injectivity

Definition: Function *f* is injective on $M \subseteq D(f)$, whenever for each pair $x_1, x_2 \in M$ it holds

 $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2).$

Remark: We say that *f* is injective, if it is injective on D(f).

Remark:

Equivalent formulation to prove that *f* is injective

$$\forall x_1, x_2 \in D(f) : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

negation to prove that f is not injective

$$\exists x_1, x_2 \in D(f) : x_1 \neq x_2 \land f(x_1) = f(x_2)$$

by definition

$$\forall x_1, x_2 \in D(f) : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

by definition

$$\forall x_1, x_2 \in D(f) : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

- from graph
 - Function is injective, if any line parallel to x-axis intersects the graph in at most one point.

by definition

$$\forall x_1, x_2 \in D(f) : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

from graph

Function is injective, if any line parallel to x-axis intersects the graph in at most one point.

Theorem: The composition of injective functions is injective.

by definition

$$\forall x_1, x_2 \in D(f) : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

from graph

 Function is injective, if any line parallel to x-axis intersects the graph in at most one point.

Theorem: The composition of injective functions is injective.

Be careful! Function
$$f(x) = \begin{cases} e^x, & x \in (-\infty, 0) \\ \sqrt{x}, & x \in (0, \infty) \end{cases}$$
 is not injective.

Monotony of functions

Definice: Let *f* be a function and $M \subseteq D(f)$. If for all $x_1, x_2 \in M$, $x_1 < x_2$ it holds (i) $f(x_1) < f(x_2)$, then *f* is increasing on *M* (ii) $f(x_1) > f(x_2)$, then *f* is decreasing on *M* (iii) $f(x_1) \le f(x_2)$, then *f* is non-decreasing on *M* (iv) $f(x_1) \ge f(x_2)$, then *f* is non-increasing on *M* If *f* has one of the properties (i) - (iv), it is said to be monotone. If *f* is from (i) or (ii), we call it strictly monotone.

Remark We say that f is increasing(decreasing, ...), if it is increasing (decreasing, ...) on its D(f).

Parity of functions

Definition:

We say that *f* is even, whenever

 (i) *x* ∈ *D*(*f*) ⇔ −*x* ∈ *D*(*f*)
 (ii) ∀*x* ∈ *D*(*f*) : *f*(−*x*) = *f*(*x*)

 We say that *f* is odd, whenever

 (i) *x* ∈ *D*(*f*) ⇔ −*x* ∈ *D*(*f*)
 (ii) ∀*x* ∈ *D*(*f*) : *f*(−*x*) = −*f*(*x*)

Parity of functions

Definition: We say that *f* is even, whenever (i) $x \in D(f) \Leftrightarrow -x \in D(f)$ (ii) $\forall x \in D(f) : f(-x) = f(x)$ We say that *f* is odd, whenever (i) $x \in D(f) \Leftrightarrow -x \in D(f)$ (ii) $\forall x \in D(f) : f(-x) = -f(x)$

Remarks:

- (i) The domain of definition of odd or even function need to be symmetrical around zero.
- (ii) The graph of even function is axially symmetrical with axis y.
- (iii) The graph of odd function has point symmetry with respect to the origin [0,0].

Definition: A function *f* is said to be periodic, whenever p > 0 such that:

(i)
$$x \in D(f) \Rightarrow x \pm p \in D(f)$$

(ii)
$$\forall x \in D(f) : f(x \pm p) = f(x)$$

The smallest such *p* is called the fundamental period.

Functions $\sin x \ a \cos x$ are 2π -periodic, functions $\operatorname{tg} x \ a \cot g x$ are π -periodic.

Inverse function

Definition: Let *f* be a given injective function with range Im(f), then there exists function f^{-1} such that $D(f^{-1}) = Im(f)$

Function f^{-1} is called inverse function of *f*.

Inverse function

Definition: Let *f* be a given injective function with range Im(f), then there exists function f^{-1} such that

$$D(f^{-1}) = Im(f)$$

$$y = f(x) \Leftrightarrow x = f^{-1}(y).$$

Function f^{-1} is called inverse function of f.

It holds:

(i) Graphs of f and f^{-1} are mutually symmetrical with respect to line y = x.

(ii)
$$Im(f^{-1}) = D(f)$$

(iii) $\forall x \in D(f) : f^{-1}(f(x)) = x$
(iv) $\forall y \in D(f^{-1}) : f(f^{-1}(y)) = y$
(v) $(f^{-1})^{-1} = f$
(vi) $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$

Examples of inverse functions

Powers and roots

$$\begin{array}{ll} f(x) = x^3 & \Rightarrow & f^{-1}(x) = \sqrt[3]{x} \\ f(x) = x^2, & x \ge 0 & \Rightarrow & f^{-1}(x) = \sqrt{x} \end{array}$$

Examples of inverse functions

Powers and roots

$$\begin{aligned} f(x) &= x^3 & \Rightarrow & f^{-1}(x) = \sqrt[3]{x} \\ f(x) &= x^2, \quad x \ge 0 & \Rightarrow & f^{-1}(x) = \sqrt{x} \end{aligned}$$

$$\sqrt{x^2} = |x|, \ x \in \mathbb{R}, \qquad (\sqrt{x})^2 = x, \ x \ge 0$$

Examples of inverse functions

Powers and roots

$$\begin{aligned} f(x) &= x^3 & \Rightarrow & f^{-1}(x) = \sqrt[3]{x} \\ f(x) &= x^2, \quad x \ge 0 & \Rightarrow & f^{-1}(x) = \sqrt{x} \end{aligned}$$

$$\sqrt{x^2} = |x|, \ x \in \mathbb{R},$$
 $(\sqrt{x})^2 = x, \ x \ge 0$

Exponentials and logarithms

$$y = a^x \Leftrightarrow x = \log_a(y), x \in \mathbb{R}, y > 0$$

Useful: $h(x) = f(x)^{g(x)} = (e^{\ln(f(x))})^{g(x)} = e^{g(x) \cdot \ln(f(x))}$

"Inverse trigonometric" functions

Definition: $f(x) = \sin x, \quad x \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle \implies f^{-1}(x) = \arcsin(x)$ $f(x) = \cos x, \quad x \in \langle 0, \pi \rangle \implies f^{-1}(x) = \arccos(x)$ $f(x) = \operatorname{tg} x, \quad x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \implies f^{-1}(x) = \operatorname{arctg}(x)$ $f(x) = \operatorname{cotg} x, \quad x \in (0, \pi) \implies f^{-1}(x) = \operatorname{arccotg}(x)$

"Inverse trigonometric" functions

Definition:			
$f(x) = \sin x$,	$\mathbf{X} \in \langle -rac{\pi}{2}, rac{\pi}{2} angle$	\implies	$f^{-1}(x) = \arcsin(x)$
$f(x) = \cos x,$	$\pmb{x} \in \langle \pmb{0}, \pi angle$	\implies	$f^{-1}(x) = \arccos(x)$
$f(x) = \operatorname{tg} x,$	$X\in \left(-rac{\pi}{2},rac{\pi}{2} ight)$	\implies	$f^{-1}(x) = \operatorname{arctg}(x)$
$f(x) = \cot g x$,	$\pmb{x}\in(\pmb{0},\pi)$	\implies	$f^{-1}(x) = \operatorname{arccotg}(x)$

Theorem:						
f(x)	$\arcsin(x)$	$\arccos(x)$	$\operatorname{arctg}(x)$	$\operatorname{arccotg}(x)$		
$\overline{D(f)}$	$\langle -1, 1 \rangle$	$\langle -1, 1 \rangle$	\mathbb{R}	\mathbb{R}		
H(f)	$\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$	$\langle {f 0},\pi angle$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	(0 , π)		
rostoucí	\checkmark	—	\checkmark	—		
klesající	-	\checkmark	-	\checkmark		
sudá	-	—	—	—		
lichá	\checkmark	_	\checkmark	_		
$f^{-1}(x)$	sin(x)	$\cos(x)$	tg(x)	$\cot g(x)$		
	$X \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$	$\pmb{x} \in \langle \pmb{0}, \pi angle$	$X \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	$x \in (0,\pi)$		