## Differential equations

## What is differential equation?

Definition: Differential equation is a relation between a function $y(x)$ (which is the unknown), its derivatives $y^{\prime}(x), y^{\prime \prime}(x), y^{\prime \prime \prime}(x), \ldots$ and independent variable $x$.

## E.g.:

$$
y^{\prime \prime \prime}-x y^{\prime \prime}-2 y y^{\prime}=x^{2} \sin x
$$

Definition: Solution of a differential equation is any function $y(x), x \in I$ (defined on interval!) such that $\forall x \in I$ the equation is satisfied.

## Definition: <br> general solution ... set of all solutions particular solution ... one specific solution integrální křivka . . . graph of a particular solution order of the equation ... order of the highest derivative in the equation

## Equations of the first order

We will be able to solve two kinds of DE's of the first order:
1 Separable DE

$$
y^{\prime}=f(x) \cdot g(y)
$$

2 Linear DE of the first order

$$
a_{0}(x) y^{\prime}+a_{1}(x) y=b_{1}(x), \quad a_{0}(x) \neq 0
$$

resp. $\quad y^{\prime}+a(x) y=b(x)$

## Equations $y^{\prime}=f(x) \cdot g(y)$.

Theorem: (Existence and uniqueness) (without proof)
Consider the equation $y^{\prime}=f(x) \cdot g(y)$.
Let $f(x)$ be continuous on interval $(a, b)$ and $g^{\prime}(y)$ continuous on interval ( $c, d$ ), then for every point of rectangle $\mathcal{O}=(a, b) \times(c, d)$ there is exactly one integral curve passing through this point.
Id est, for every point $\left[x_{0}, y_{0}\right] \in \mathcal{O}$ there exists unique solution of equation $y^{\prime}=f(x) g(y)$ satisfying the initial condition $y\left(x_{0}\right)=y_{0}$.

Geometrical meaning: To every point $[x, y]$ in the rectangle $\mathcal{O}$ we assign a small line segment with directrix $k=f(x) \cdot g(y)$, obtaining directional field. The line segment is tangent to the integral curve passing through $[x, y]$.

Example: $y^{\prime}=-\frac{x}{y}$ on $\mathcal{O}=(-\infty, \infty) \times(0, \infty)$

## Separation of variables for $y^{\prime}=f(x) g(y)$.

1 Find out all $y_{0}$, for which $g\left(y_{0}\right)=0$.
Then $y \equiv y_{0}$ is a constant solution of DE $y^{\prime}=f(x) g(y)$.
$2 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=f(x) g(y)$,
3 Separate the variables: $\frac{\mathrm{d} y}{g(y)}=f(x) \mathrm{d} x$
$4 \int \frac{\mathrm{~d} y}{g(y)}=\int f(x) \mathrm{d} x$
5 Calculate the antiderivatives:

$$
\begin{aligned}
& G(y)+C_{1}=F(x)+C_{2}, \quad \text { where } C_{1}, C_{2} \in \mathbb{R} \text { constants } \\
& G(y)=F(x)+C, \quad \text { with } C=C_{2}-C_{2} .
\end{aligned}
$$

6 Extract $y: \quad y(x)=G^{-1}(F(x)+C), \quad$ where $x \in I$.

## Separation of variables-summary

Věta: Let $f(x)$ be continuous on $(a, b)$ and $g^{\prime}(y)$ continuous on $(c, d)$. Then:
1 If $g\left(y_{0}\right)=0$ for some $y_{0} \in(c, d)$, then the constant function

$$
y(x) \equiv y_{0}
$$

defined on $(a, b)$ is solution to the equation $y^{\prime}=f(x) g(y)$.
2 If $g(y) \neq 0$ for all $y \in(c, d)$, then the general solution to the equation $y^{\prime}=f(x) g(y)$ on rectangle $(a, b) \times(c, d)$ reads as

$$
\begin{gathered}
y(x)=G^{-1}(F(x)+C) \\
\text { where } F(x)=\int f(x) d x \text { a } G(y)=\int \frac{1}{g(y)} d y
\end{gathered}
$$

## Linear differential equation of the first order

Let us assume that $a_{0}(x), a_{1}(x), b_{1}(x), a(x), b(x)$ are continuous functions on $I=(\alpha, \beta)$

## Definition:

Linear differential equation of the first order is an equation in form

$$
\begin{gathered}
a_{0}(x) y^{\prime}+a_{1}(x) y=b_{1}(x), \quad a_{0}(x) \neq 0 \forall x \in I \\
\text { or } \\
y^{\prime}+a(x) y=b(x) .
\end{gathered}
$$

- $\quad y^{\prime}+a(x) y=0$
is called homogeneous linear differential equation (HLDE) of the first order.

$$
y^{\prime}+a(x) y=b(x), \quad \exists x \in I: b(x) \neq 0
$$

is called non-homogeneous linear differential equation (NLDE) of the first order.

## Existence and uniqueness for LDE

Theorem: (without proof)
Consider equation

$$
y^{\prime}+a(x) y=b(x) .
$$

Let $a(x), b(x)$ be continuous on $I=(a, b)$, then for any [ $\left.x_{0}, y_{0}\right] \in \mathcal{O}=I \times \mathbb{R}$ there exists unique solution of equation $y^{\prime}+a(x) y=b(x)$ satisfying the initial condition $y\left(x_{0}\right)=y_{0}$.

Remark 1: The same for

$$
a_{0}(x) y^{\prime}+a_{1}(x) y=b_{1}(x), \quad a_{0}(x) \neq 0 \forall x \in I .
$$

Remark 2: The domain of definition of the solution to LDE is always whole interval I.

## Structure of solutions to LDE

Theorem: General solution to NLDE of the first order

$$
y^{\prime}+a(x) y=b(x)
$$

is in the form

$$
y=y_{H}+y_{p}
$$

where $y_{H}$ are all solutions to HLDE and
$y_{p}$ is one arbitrary particular solution to NLDE.
Theorem: The general solution to HLDE of the first order

$$
y^{\prime}+a(x) y=0
$$

can be written in the form

$$
y_{H}(x)=C \mathrm{e}^{-A(x)}, C \in \mathbb{R},
$$

where $A(x)=\int a(x) \mathrm{d} x$.
Remark: You don't have to memorize the formula for $y_{H}$, (separation).

## Solution NLDE - variation of constant.

Consider NLDE

$$
y^{\prime}+a(x) y=b(x), \quad x \in I
$$

1 Solution of corresponding HLDE $y^{\prime}+a(x) y=0$
$y_{H}$ is in the form: $\quad y_{H}(x)=C \cdot \varphi(x), C \in \mathbb{R}$
( možno použít vzorec $y_{H}(x)=C \mathrm{e}^{-A(x)}$ )
2 Variation of constant $=$ Look for $y_{p}$ in the form

$$
y_{p}(x)=c(x) \cdot \varphi(x)
$$

where $c(x)$ is some function on $I$.

- Plug $y_{p}$ into NLDE, to get equation for $c^{\prime}(x)$

$$
c^{\prime}(x) \varphi(x)=b(x)
$$

- Calculate $c^{\prime}(x)$ and integrate to obtain $c(x)=\int \frac{b(x)}{\varphi(x)} \mathrm{d} x$.

3 Všechna řešení NLDR tedy jsou:

$$
y=y_{p}+y_{H}=C \cdot \varphi(x)+c(x) \cdot \varphi(x), C \in \mathbb{R}
$$

## Variation of constant var. 2 - summary

## Věta: Consider NLDE

$$
a_{0}(x) y^{\prime}+a_{1}(x) y=b_{1}(x), \quad a_{0}(x) \neq 0 \quad \forall x \in I
$$

and a solution to corresponding HLDE in the form

$$
y_{H}(x)=C \cdot \varphi(x) .
$$

Whenever $c(x)$ satisfies

$$
c^{\prime}(x) \varphi(x)=\frac{b_{1}(x)}{a_{0}(x)}
$$

then the function $y_{p}(x)=c(x) \varphi(x)$ is a solution to the NLDE.
Example 1: $\quad y^{\prime}-\frac{1}{2 \sqrt{x}} y=e^{\sqrt{x}}$
Example 2: $\quad y^{\prime}-\frac{2}{x} y=x^{3}, \quad y(1)=\frac{3}{2}$

## Euler method

Numerical method for approximating a solution of the initial value problem:

$$
y^{\prime}=f(x, y) \quad y\left(x_{0}\right)=y_{0}
$$

After $n$ steps we will obtain an aproximative value of the solution at points $x_{0}, x_{1}, \ldots, x_{n}$.
Let us denote the approximative values as $y_{i} \doteq y\left(x_{i}\right)$.
The approximative values are calculated using the Euler method as follows:

```
xi+1}=\mp@subsup{x}{i}{}+h
yi+1}=\mp@subsup{y}{i}{}+f(\mp@subsup{x}{i}{},\mp@subsup{y}{i}{})\cdoth\quadi=0,1,\ldots,
```

where $h$ is the step of the method. The error $E(h)=y_{n}-y\left(x_{n}\right)$ is directly proportional to $h\left(=h^{1}\right)$. We say that the Euler method is a method of the first order.

