Differential equations

What is differential equation?

Definition: Differential equation is a relation between a function y(x) (which is the unknown), its derivatives $y'(x), y''(x), y'''(x), \ldots$ and independent variable *x*.

E.g.:
$$y''' - x y'' - 2 y y' = x^2 sinx$$

Definition: Solution of a differential equation is any function y(x), $x \in I$ (defined on interval!) such that $\forall x \in I$ the equation is satisfied.

Definition:

general solution ... set of all solutions particular solution ... one specific solution integrální křivka ... graph of a particular solution order of the equation ... order of the highest derivative in the equation We will be able to solve two kinds of DE's of the first order:

1 Separable DE

$$y'=f(x)\cdot g(y)$$

2 Linear DE of the first order

$$a_0(x)y' + a_1(x)y = b_1(x), \quad a_0(x) \neq 0$$

resp.
$$y' + a(x)y = b(x)$$

Equations $y' = f(x) \cdot g(y)$.

Theorem: (Existence and uniqueness) (without proof) Consider the equation $y' = f(x) \cdot g(y)$. Let f(x) be continuous on interval (a, b) and g'(y) continuous on interval (c, d), then for every point of rectangle $\mathcal{O} = (a, b) \times (c, d)$ there is exactly one integral curve passing through this point. Id est, for every point $[x_0, y_0] \in \mathcal{O}$ there exists unique solution of equation y' = f(x) g(y) satisfying the initial condition $y(x_0) = y_0$.

Geometrical meaning: To every point [x, y] in the rectangle \mathcal{O} we assign a small line segment with directrix $k = f(x) \cdot g(y)$, obtaining directional field. The line segment is tangent to the integral curve passing through [x, y].

Example:
$$y' = -\frac{x}{y}$$
 on $\mathcal{O} = (-\infty, \infty) \times (0, \infty)$

Separation of variables for y' = f(x) g(y).

Find out all y_0 , for which $g(y_0) = 0$. Then $y \equiv y_0$ is a constant solution of DE y' = f(x) g(y).

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y),$$

3 Separate the variables : $\frac{dy}{g(y)} = f(x)dx$

4
$$\int \frac{\mathrm{d}y}{g(y)} = \int f(x)\mathrm{d}x$$

2

5 Calculate the antiderivatives: $G(y) + C_1 = F(x) + C_2$, where $C_1, C_2 \in \mathbb{R}$ constants G(y) = F(x) + C, with $C = C_2 - C_2$.

6 Extract y: $y(x) = G^{-1}(F(x) + C)$, where $x \in I$.

Separation of variables-summary

Věta: Let f(x) be continuous on (a, b) and g'(y) continuous on (c, d). Then:

1 If $g(y_0) = 0$ for some $y_0 \in (c, d)$, then the constant function

$$y(x) \equiv y_0$$

defined on (a, b) is solution to the equation y' = f(x) g(y).

If g(y) ≠ 0 for all y ∈ (c, d), then the general solution to the equation y' = f(x) g(y) on rectangle (a, b) × (c, d) reads as

$$y(x) = G^{-1}(F(x) + C),$$

where $F(x) = \int f(x) dx$ a $G(y) = \int \frac{1}{g(y)} dy.$

Linear differential equation of the first order

Let us assume that $a_0(x)$, $a_1(x)$, $b_1(x)$, a(x), b(x) are continuous functions on $I = (\alpha, \beta)$

Definition:

Linear differential equation of the first order is an equation in form

$$a_0(x)y'+a_1(x)y=b_1(x), \quad a_0(x)
eq 0 \ \forall x\in I$$
 or $y'+a(x)y=b(x).$

• y' + a(x)y = 0is called homogeneous linear differential equation (HLDE) of the first order.

■ y' + a(x)y = b(x), $\exists x \in I : b(x) \neq 0$ is called non-homogeneous linear differential equation (NLDE) of the first order.

Existence and uniqueness for LDE

Theorem: (without proof) Consider equation

$$y'+a(x)y=b(x).$$

Let a(x), b(x) be continuous on I = (a, b), then for any $[x_0, y_0] \in \mathcal{O} = I \times \mathbb{R}$ there exists unique solution of equation y' + a(x)y = b(x) satisfying the initial condition $y(x_0) = y_0$.

Remark 1: The same for $a_0(x)y' + a_1(x)y = b_1(x), \quad a_0(x) \neq 0 \ \forall x \in I.$

Remark 2: The domain of definition of the solution to LDE is always whole interval *I*.

Structure of solutions to LDE

Theorem: General solution to NLDE of the first order

$$y' + a(x)y = b(x)$$

is in the form

$$y = y_H + y_p$$

where y_H are all solutions to HLDE and y_p is one arbitrary particular solution to NLDE.

Theorem: The general solution to HLDE of the first order

$$y'+a(x)y=0$$

can be written in the form

$$y_H(x) = C e^{-A(x)}, \ C \in \mathbb{R},$$

where $A(x) = \int a(x) dx$.

Remark: You don't have to memorize the formula for y_H , (separation).

Solution NLDE - variation of constant.

Consider NLDE

$$y' + a(x)y = b(x), \quad x \in I.$$

1 Solution of corresponding HLDE y' + a(x)y = 0 y_H is in the form: $y_H(x) = C \cdot \varphi(x), \ C \in \mathbb{R}$

(možno použít vzorec $y_H(x) = C e^{-A(x)}$)

2 Variation of constant = Look for y_p in the form $y_p(x) = c(x) \cdot \varphi(x)$,

where c(x) is some function on *I*.

• Plug y_p into NLDE, to get equation for c'(x)

$$c'(x)\varphi(x)=b(x).$$

• Calculate c'(x) and integrate to obtain $c(x) = \int \frac{b(x)}{\varphi(x)} dx$.

3 Všechna řešení NLDR tedy jsou: $y = y_p + y_H = C \cdot \varphi(x) + c(x) \cdot \varphi(x), \ C \in \mathbb{R}$

Variation of constant var. 2 - summary

Věta: Consider NLDE $a_0(x)y' + a_1(x)y = b_1(x), \quad a_0(x) \neq 0 \quad \forall x \in I$ and a solution to corresponding HLDE in the form $V_H(x) = C \cdot \varphi(x).$ Whenever c(x) satisfies $c'(x)\varphi(x)=\frac{b_1(x)}{a_0(x)},$ then the function $y_{\rho}(x) = c(x)\varphi(x)$ is a solution to the NLDE. **Example 1:** $y' - \frac{1}{2\sqrt{x}}y = e^{\sqrt{x}}$

Example 2: $y' - \frac{2}{x}y = x^3$, $y(1) = \frac{3}{2}$

Euler method

Numerical method for approximating a solution of the initial value problem:

y' = f(x, y) $y(x_0) = y_0.$

After *n* steps we will obtain an aproximative value of the solution at points x_0, x_1, \ldots, x_n . Let us denote the approximative values as $y_i \doteq y(x_i)$.

The approximative values are calculated using the Euler method as follows:

 $\begin{array}{rcl} x_{i+1} & = & x_i + h, \\ y_{i+1} & = & y_i + f(x_i, y_i) \cdot h & i = 0, 1, \dots, n \end{array}$

where *h* is the step of the method. The error $E(h) = y_n - y(x_n)$ is directly proportional to $h (= h^1)$. We say that the Euler method is a method of the first order.