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Derivative of a function at a point

Definition: Derivative of function f at point x0 . . .

f ′(x0) = lim
x→x0

f (x)− f (x0)

x − x0
.

If the limit is proper (i.e. ∈ R), we call it proper derivative.
If the limit is improper (tj. = ±∞), we call it improper derivative.

Remark: By substitution x − x0 = h, we get equivalent formula

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
.
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Geometrical meaning of derivative

Theorem: (Geometrical meaning) !!!
Derivative f ′(x0) je slope of the tangent line to the graph of function
f at point [x0, f (x0)]

 Consequence: equation of the tangent line y − f (x0) =
f ′(x0)(x − x0)
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Importance of derivative in applications

physics: instantaneous velocity v(t) = s′(t)

s(t0+ M t)− s(t0)
M t

−→
Mt→0

s′(t0)

average velocity within instantaneous velocity
time interval 〈t0, t0+ M t〉 at time t0

chemistry: rate of change for reaction w(t) = c′(t)
instantaneous change of concentration

c(t0+ M t)− c(t0)
M t

−→
Mt→0

c′(t0)

average rate of change instantaneous
within the time interval chemical reaction rate
〈t0, t0+ M t〉 at time t0
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One-sided derivatives at a point

Definition:
Right-hand derivative of f at point x0

f ′+(x0) = lim
x→x0+

f (x)− f (x0)

x − x0

Left-hand derivative of f at point x0

f ′−(x0) = lim
x→x0−

f (x)− f (x0)

x − x0

Theorem: Function f is differentiable at point x0 if and only
if f ′+(x0) = f ′−(x0). Then it holds:

f ′(x0) = f ′+(x0) = f ′−(x0)
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Derivative of a function on interval

Definition:
Function f has derivative on interval (a,b)⇔ f has
derivative at each point of (a,b).
Function f has derivative on interval 〈a,b〉 ⇔ f has
derivative on (a,b) and it has one-sided derivatives f ′+(a),
f ′−(b).

Theorem:
If f has proper derivative on interval I, then f is continuous on I.

(! the reverse implication is not true !)
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Derivatives of elementary functions

(k)′ = 0 k ∈ R

(xa)′ = a · xa−1 a ∈ R

(ax)′ = ax · ln(a) 1 6= a > 0

(loga(x))
′ =

1
x · ln(a)

1 6= a > 0

(sin(x))′ = cos(x) (cos(x))′ = − sin(x)

(tg(x))′ =
1

cos2(x)
(cotg(x))′ =

−1
sin2(x)

(arcsin(x))′ =
1√

1− x2
(arccos(x))′ =

−1√
1− x2

(arctg(x))′ =
1

1 + x2 (arccotg(x))′ =
−1

1 + x2
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Calculating the derivatives

Theorem:

(i) [k · f (x)]′ = k · f ′(x), k ∈ R

(ii) [f (x)± g(x)]′ = f ′(x)± g′(x)

(iii) [f (x) · g(x)]′ = f ′(x) · g(x) + f (x) · g′(x)

(iv)
[

f (x)
g(x)

]′
=

f ′(x) · g(x)− f (x) · g′(x)
g2(x)

(v)
[
f
(
g(x)

)]′
= f ′

(
g(x)

)
· g′(x)

Definice (derivace vyšších řádů): n-tou derivaci funkce f
označujeme f (n) a definujeme:

f (n) =
[
f (n−1)

]′
, kde f (0) = f .
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označujeme f (n) a definujeme:

f (n) =
[
f (n−1)

]′
, kde f (0) = f .

8/11



Calculating the derivatives

Theorem:

(i) [k · f (x)]′ = k · f ′(x), k ∈ R

(ii) [f (x)± g(x)]′ = f ′(x)± g′(x)

(iii) [f (x) · g(x)]′ = f ′(x) · g(x) + f (x) · g′(x)

(iv)
[

f (x)
g(x)

]′
=

f ′(x) · g(x)− f (x) · g′(x)
g2(x)

(v)
[
f
(
g(x)

)]′
= f ′

(
g(x)

)
· g′(x)

Definice (derivace vyšších řádů): n-tou derivaci funkce f
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Mean value theorems

Theorem (Rolle’s mean value theorem):
Let f be continuous on 〈a,b〉 and differentiable on (a,b),
such that f (a) = f (b). Then

∃ c ∈ (a,b) such that f ′(c) = 0.

Theorem (Lagrange’s mean value theorem):
Let f be continuous on 〈a,b〉 and differentiable on (a,b),
then

∃ c ∈ (a,b) such that f ′(c) =
f (b)− f (a)

b − a
.

Theorem:
f ′(x) > 0 on interval I ⇒ f is increasing on I

f ′(x) < 0 on interval I ⇒ f is decreasing on I
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l’Hospital’s rule
Theorem (l’Hospital’s rule): It holds

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

,

WHENEVER both of the following conditions are satisfied

(i) lim
x→a

f (x) = lim
x→a

g(x) = 0, or lim
x→a
|g(x)| = +∞

(ii) lim
x→a

f ′(x)
g′(x)

exists (proper or improper).

It holds also for one-sided limits and limits at improper points.

It can be uses only for ratio and only for types
0
0

or
whatever
∞

.

Ratio of derivatives is not the same as derivative of ratio!

When the limit on the right hand side does not exist, the limit has
to be calculated in a different way.
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Corollary of the l’Hospital rule

Corollary: Let f be continuous on 〈a,b), suppose f ′ exists
on (a,b)and that there exists lim

x→a+
f ′(x). Then

f ′+(a) = lim
x→a+

f ′(x).

Remark: Analogously on (a,b〉 for f ′−(b).
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