Derivatives

Derivative of a function at a point

Derivative of a function at a point

Definition: Derivative of function f at point $x_{0} \ldots$

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Derivative of a function at a point

Definition: Derivative of function f at point $x_{0} \ldots$

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

If the limit is proper (i.e. $\in \mathbb{R}$), we call it proper derivative.
If the limit is improper ($\mathrm{tj} .= \pm \infty$), we call it improper derivative.

Derivative of a function at a point

Definition: Derivative of function f at point $x_{0} \ldots$

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

If the limit is proper (i.e. $\in \mathbb{R}$), we call it proper derivative.
If the limit is improper ($\mathrm{tj} .= \pm \infty$), we call it improper derivative.
Remark: By substitution $x-x_{0}=h$, we get equivalent formula

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Geometrical meaning of derivative

Theorem: (Geometrical meaning) !!!
Derivative $f^{\prime}\left(x_{0}\right)$ je slope of the tangent line to the graph of function f at point $\left[x_{0}, f\left(x_{0}\right)\right]$
\rightsquigarrow Consequence: equation of the tangent line $\quad y-f\left(x_{0}\right)=$ $f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$

Importance of derivative in applications

■ physics: \rightsquigarrow instantaneous velocity $v(t)=s^{\prime}(t)$

$$
\frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\Delta t}
$$

average velocity within time interval $\left\langle t_{0}, t_{0}+\Delta t\right\rangle$

instantaneous velocity at time t_{0}

Importance of derivative in applications

■ physics: \rightsquigarrow instantaneous velocity $v(t)=s^{\prime}(t)$

$$
\begin{equation*}
\frac{s\left(t_{0}+\Delta t\right)-s\left(t_{0}\right)}{\Delta t} \tag{0}
\end{equation*}
$$

average velocity within time interval $\left\langle t_{0}, t_{0}+\Delta t\right\rangle$
instantaneous velocity at time t_{0}

■ chemistry: \rightsquigarrow rate of change for reaction $w(t)=c^{\prime}(t)$ instantaneous change of concentration

$$
\begin{equation*}
\frac{c\left(t_{0}+\Delta t\right)-c\left(t_{0}\right)}{\Delta t} \tag{0}
\end{equation*}
$$

average rate of change within the time interval

$$
\left\langle t_{0}, t_{0}+\Delta t\right\rangle
$$

instantaneous
chemical reaction rate
at time t_{0}

One-sided derivatives at a point

Definition:

■ Right-hand derivative of f at point x_{0}

$$
f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}+} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- Left-hand derivative of f at point x_{0}

$$
f_{-}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}-} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

One-sided derivatives at a point

Definition:

\square Right-hand derivative of f at point x_{0}

$$
f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}+} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- Left-hand derivative of f at point x_{0}

$$
f_{-}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}-} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Theorem: Function f is differentiable at point x_{0} if and only if $f_{+}^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right)$. Then it holds:

$$
f^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right)
$$

Derivative of a function on interval

Definition:

■ Function f has derivative on interval $(a, b) \Leftrightarrow f$ has derivative at each point of (a, b).

- Function f has derivative on interval $\langle a, b\rangle \Leftrightarrow f$ has derivative on (a, b) and it has one-sided derivatives $f_{+}^{\prime}(a)$, $f_{-}^{\prime}(b)$.

Derivative of a function on interval

Definition:

■ Function f has derivative on interval $(a, b) \Leftrightarrow f$ has derivative at each point of (a, b).
■ Function f has derivative on interval $\langle a, b\rangle \Leftrightarrow f$ has derivative on (a, b) and it has one-sided derivatives $f_{+}^{\prime}(a)$, $f_{-}^{\prime}(b)$.

Theorem:

If f has proper derivative on interval I, then f is continuous on I.
(! the reverse implication is not true !)

Derivatives of elementary functions

$$
\begin{array}{ll}
(k)^{\prime}=0 & k \in \mathbb{R} \\
\left(x^{a}\right)^{\prime}=a \cdot x^{a-1} & a \in \mathbb{R} \\
\left(a^{x}\right)^{\prime}=a^{x} \cdot \ln (a) & 1 \neq a>0 \\
\left(\log _{a}(x)\right)^{\prime}=\frac{1}{x \cdot \ln (a)} & 1 \neq a>0 \\
(\sin (x))^{\prime}=\cos (x) & \\
(\operatorname{tg}(x))^{\prime}=\frac{1}{\cos ^{2}(x)} & (\cos (x))^{\prime}=-\sin (x) \\
(\arcsin (x))^{\prime}=\frac{1}{\sqrt{1-x^{2}}} & (\operatorname{cotg}(x))^{\prime}=\frac{-1}{\sin ^{2}(x)} \\
(\operatorname{arctg}(x))^{\prime}=\frac{1}{1+x^{2}} & (\arccos (x))^{\prime}=\frac{-1}{\sqrt{1-x^{2}}} \\
(\operatorname{arccotg}(x))^{\prime}=\frac{-1}{1+x^{2}}
\end{array}
$$

Calculating the derivatives

Theorem:

Calculating the derivatives

Theorem:

(i) $[k \cdot f(x)]^{\prime}=k \cdot f^{\prime}(x), k \in \mathbb{R}$

Calculating the derivatives

Theorem:

(i) $[k \cdot f(x)]^{\prime}=k \cdot f^{\prime}(x), k \in \mathbb{R}$
(ii) $[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$

Calculating the derivatives

Theorem:

(i) $[k \cdot f(x)]^{\prime}=k \cdot f^{\prime}(x), k \in \mathbb{R}$
(ii) $[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
(iii) $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$

Calculating the derivatives

Theorem:

(i) $[k \cdot f(x)]^{\prime}=k \cdot f^{\prime}(x), k \in \mathbb{R}$
(ii) $[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
(iii) $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
(iv) $\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g^{2}(x)}$

Calculating the derivatives

Theorem:

(i) $[k \cdot f(x)]^{\prime}=k \cdot f^{\prime}(x), k \in \mathbb{R}$
(ii) $[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
(iii) $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
(iv) $\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g^{2}(x)}$
(v) $[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Calculating the derivatives

Theorem:

(i) $[k \cdot f(x)]^{\prime}=k \cdot f^{\prime}(x), k \in \mathbb{R}$
(ii) $[f(x) \pm g(x)]^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
(iii) $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
(iv) $\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g^{2}(x)}$
(v) $[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Definice (derivace vyšších řádů): n-tou derivaci funkce f označujeme $f^{(n)}$ a definujeme:

$$
f^{(n)}=\left[f^{(n-1)}\right]^{\prime}, \operatorname{kde} f^{(0)}=f
$$

Mean value theorems

Theorem (Rolle's mean value theorem):
Let f be continuous on $\langle a, b\rangle$ and differentiable on (a, b), such that $f(a)=f(b)$. Then

$$
\exists c \in(a, b) \text { such that } \quad f^{\prime}(c)=0
$$

Mean value theorems

Theorem (Rolle's mean value theorem):
Let f be continuous on $\langle a, b\rangle$ and differentiable on (a, b), such that $f(a)=f(b)$. Then

$$
\exists c \in(a, b) \text { such that } \quad f^{\prime}(c)=0
$$

Theorem (Lagrange's mean value theorem):
Let f be continuous on $\langle a, b\rangle$ and differentiable on (a, b), then

$$
\exists c \in(a, b) \text { such that } \quad f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Mean value theorems

Theorem (Rolle's mean value theorem):

Let f be continuous on $\langle a, b\rangle$ and differentiable on (a, b), such that $f(a)=f(b)$. Then

$$
\exists c \in(a, b) \text { such that } \quad f^{\prime}(c)=0
$$

Theorem (Lagrange's mean value theorem):
Let f be continuous on $\langle a, b\rangle$ and differentiable on (a, b), then

$$
\exists c \in(a, b) \text { such that } \quad f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem:

$$
\begin{aligned}
& f^{\prime}(x)>0 \text { on interval } I \Rightarrow \mathrm{f} \text { is increasing on I } \\
& f^{\prime}(x)<0 \text { on interval } / \Rightarrow \mathrm{f} \text { is decreasing on I }
\end{aligned}
$$

l'Hospital's rule

Theorem (l'Hospital's rule): It holds

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

WHENEVER both of the following conditions are satisfied
(i) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$, or $\lim _{x \rightarrow a}|g(x)|=+\infty$
(ii) $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists (proper or improper).

l'Hospital's rule

Theorem (l'Hospital's rule): It holds

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

WHENEVER both of the following conditions are satisfied
(i) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$, or $\lim _{x \rightarrow a}|g(x)|=+\infty$
(ii) $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists (proper or improper).

■ It holds also for one-sided limits and limits at improper points.

- It can be uses only for ratio and only for types $\frac{0}{0}$ or $\frac{\text { whatever }}{\infty}$.
- Ratio of derivatives is not the same as derivative of ratio!
- When the limit on the right hand side does not exist, the limit has to be calculated in a different way.

Corollary of the l'Hospital rule

Corollary: Let f be continuous on $\left\langle a, b\right.$), suppose f^{\prime} exists on (a, b) and that there exists $\lim _{x \rightarrow a+} f^{\prime}(x)$. Then

$$
f_{+}^{\prime}(a)=\lim _{x \rightarrow a+} f^{\prime}(x)
$$

Remark: Analogously on ($a, b\rangle$ for $f_{-}^{\prime}(b)$.

