Derivatives

Definition: Derivative of function f at point $x_0 \dots$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Definition: Derivative of function f at point $x_0 \dots$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

If the limit is proper (i.e. $\in \mathbb{R}$), we call it proper derivative. If the limit is improper (tj. $= \pm \infty$), we call it improper derivative.

Definition: Derivative of function f at point $x_0 \dots$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

If the limit is proper (i.e. $\in \mathbb{R}$), we call it proper derivative. If the limit is improper (tj. $= \pm \infty$), we call it improper derivative.

Remark: By substitution $x - x_0 = h$, we get equivalent formula

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Geometrical meaning of derivative

Theorem: (Geometrical meaning) !!!

Derivative $f'(x_0)$ je slope of the tangent line to the graph of function f at point $[x_0, f(x_0)]$

→ **Consequence:** equation of the tangent line $y - f(x_0) = f'(x_0)(x - x_0)$

Importance of derivative in applications

physics: \rightsquigarrow instantaneous velocity v(t) = s'(t)

$$\frac{\boldsymbol{s}(t_0 + \vartriangle t) - \boldsymbol{s}(t_0)}{\vartriangle t}$$

average velocity within time interval $\langle t_0, t_0 + \triangle t \rangle$

instantaneous velocity at time t_0

Importance of derivative in applications

ave

physics: \rightsquigarrow instantaneous velocity v(t) = s'(t)

$$\begin{array}{ccc} \displaystyle \frac{\boldsymbol{s}(t_0 + \bigtriangleup t) - \boldsymbol{s}(t_0)}{\bigtriangleup t} & \xrightarrow{} & \boldsymbol{s}'(t_0) \\ \text{average velocity within} & \text{instantaneous velocity} \\ \text{time interval } \langle t_0, t_0 + \bigtriangleup t \rangle & \text{at time } t_0 \end{array}$$

chemistry: \rightsquigarrow rate of change for reaction w(t) = c'(t)instantaneous change of concentration

 $\frac{c(t_0 + \vartriangle t) - c(t_0)}{\land t}$ $\xrightarrow{\wedge t \to 0}$ $c'(t_0)$ average rate of change instantaneous within the time interval chemical reaction rate $\langle t_0, t_0 + \Delta t \rangle$ at time t_0

One-sided derivatives at a point

Definition:

Right-hand derivative of f at point x_0

$$f'_{+}(x_0) = \lim_{x \to x_0+} \frac{f(x) - f(x_0)}{x - x_0}$$

Left-hand derivative of f at point x_0

$$f'_{-}(x_0) = \lim_{x \to x_0-} \frac{f(x) - f(x_0)}{x - x_0}$$

One-sided derivatives at a point

Definition: Right-hand derivative of f at point x_0 $f'_+(x_0) = \lim_{x \to x_0+} \frac{f(x) - f(x_0)}{x - x_0}$ Left-hand derivative of f at point x_0 $f'_-(x_0) = \lim_{x \to x_0-} \frac{f(x) - f(x_0)}{x - x_0}$

Theorem: Function *f* is differentiable at point x_0 if and only if $f'_+(x_0) = f'_-(x_0)$. Then it holds:

$$f'(x_0) = f'_+(x_0) = f'_-(x_0)$$

Derivative of a function on interval

Definition:

- Function f has derivative on interval $(a, b) \Leftrightarrow f$ has derivative at each point of (a, b).
- Function *f* has derivative on interval (*a*, *b*) ⇔ *f* has derivative on (*a*, *b*) and it has one-sided derivatives f'₊(*a*), f'₋(*b*).

Derivative of a function on interval

Definition:

- Function f has derivative on interval $(a, b) \Leftrightarrow f$ has derivative at each point of (a, b).
- Function *f* has derivative on interval (*a*, *b*) ⇔ *f* has derivative on (*a*, *b*) and it has one-sided derivatives f'₊(*a*), f'₋(*b*).

Theorem:

If *f* has proper derivative on interval *I*, then *f* is continuous on *I*.

(! the reverse implication is not true !)

Derivatives of elementary functions

$$\begin{array}{ll} (k)' = 0 & k \in \mathbb{R} \\ (x^{a})' = a \cdot x^{a-1} & a \in \mathbb{R} \\ (a^{x})' = a^{x} \cdot \ln(a) & 1 \neq a > 0 \\ (\log_{a}(x))' = \frac{1}{x \cdot \ln(a)} & 1 \neq a > 0 \\ (\sin(x))' = \cos(x) & (\cos(x))' = -\sin(x) \\ (\operatorname{tg}(x))' = \frac{1}{\cos^{2}(x)} & (\operatorname{cotg}(x))' = \frac{-1}{\sin^{2}(x)} \\ (\operatorname{arcsin}(x))' = \frac{1}{\sqrt{1-x^{2}}} & (\operatorname{arccos}(x))' = \frac{-1}{\sqrt{1-x^{2}}} \\ (\operatorname{arctg}(x))' = \frac{1}{1+x^{2}} & (\operatorname{arccotg}(x))' = \frac{-1}{1+x^{2}} \end{array}$$

(i)
$$[k \cdot f(x)]' = k \cdot f'(x), k \in \mathbb{R}$$

(i)
$$[k \cdot f(x)]' = k \cdot f'(x), k \in \mathbb{R}$$

(ii)
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

Theorem:

(i)
$$[k \cdot f(x)]' = k \cdot f'(x), k \in \mathbb{R}$$

(ii)
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

(iii) $[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

(i)
$$[k \cdot f(x)]' = k \cdot f'(x), k \in \mathbb{R}$$

(ii)
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

(iii)
$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

(iv)
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

(i)
$$[k \cdot f(x)]' = k \cdot f'(x), k \in \mathbb{R}$$

(ii)
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

(iii)
$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

(iv)
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

(v)
$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

Theorem:

(i)
$$[k \cdot f(x)]' = k \cdot f'(x), k \in \mathbb{R}$$

(ii)
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

(iii)
$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

(iv)
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

$$(\mathbf{v}) \ \left[f(g(x))\right]' = f'(g(x)) \cdot g'(x)$$

Definice (derivace vyšších řádů): n-tou derivaci funkce f označujeme $f^{(n)}$ a definujeme:

$$f^{(n)} = \left[f^{(n-1)}\right]'$$
, kde $f^{(0)} = f$.

Mean value theorems

Theorem (Rolle's mean value theorem):

Let *f* be continuous on $\langle a, b \rangle$ and differentiable on (a, b), such that f(a) = f(b). Then

 $\exists c \in (a, b) \text{ such that } f'(c) = 0.$

Mean value theorems

Theorem (Rolle's mean value theorem):

Let *f* be continuous on $\langle a, b \rangle$ and differentiable on (a, b), such that f(a) = f(b). Then

 $\exists c \in (a, b) \text{ such that } f'(c) = 0.$

Theorem (Lagrange's mean value theorem): Let *f* be continuous on $\langle a, b \rangle$ and differentiable on (a, b), then

$$\exists c \in (a, b)$$
 such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Mean value theorems

Theorem (Rolle's mean value theorem):

Let *f* be continuous on $\langle a, b \rangle$ and differentiable on (a, b), such that f(a) = f(b). Then

 $\exists c \in (a, b) \text{ such that } f'(c) = 0.$

Theorem (Lagrange's mean value theorem): Let *f* be continuous on $\langle a, b \rangle$ and differentiable on (a, b), then

$$\exists c \in (a,b)$$
 such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Theorem: f'(x) > 0 on interval $I \Rightarrow f$ is increasing on If'(x) < 0 on interval $I \Rightarrow f$ is decreasing on I

l'Hospital's rule

Theorem (I'Hospital's rule): It holds

$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$

WHENEVER both of the following conditions are satisfied

(i)
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
, or $\lim_{x \to a} |g(x)| = +\infty$

(ii)
$$\lim_{x \to a} \frac{f'(x)}{q'(x)}$$
 exists (proper or improper).

l'Hospital's rule

Theorem (l'Hospital's rule): It holds

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

WHENEVER both of the following conditions are satisfied

(i)
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
, or $\lim_{x \to a} |g(x)| = +\infty$

(ii)
$$\lim_{x \to a} \frac{f'(x)}{g'(x)}$$
 exists (proper or improper).

It holds also for one-sided limits and limits at improper points.

- It can be uses only for ratio and only for types $\frac{0}{0}$ or $\frac{\text{whatever}}{\infty}$
- Ratio of derivatives is not the same as derivative of ratio!
- When the limit on the right hand side does not exist, the limit has to be calculated in a different way.

Corollary: Let *f* be continuous on (a, b), suppose *f'* exists on (a, b) and that there exists $\lim_{x \to a+} f'(x)$. Then $f'_+(a) = \lim_{x \to a+} f'(x)$.

Remark: Analogously on (a, b) for $f'_{-}(b)$.