Parametric equations of planar curves

Logarithmic spiral, wikipedia.org

Mapping from \mathbb{R} to \mathbb{R}^2

Definition: Let $I \subseteq \mathbb{R}$ be interval. Mapping that for every $t \in I$ uniquely assigns an ordered pair of numbers $(\varphi_1(t), \varphi_2(t))$ is called a mapping of interval *I* to the plane \mathbb{R}^2 . We denote

$$\varphi: I \to \mathbb{R}^2$$

$$\varphi: t \mapsto (\varphi_1(t), \varphi_2(t)) = (x(t), y(t))$$

Mapping from \mathbb{R} to \mathbb{R}^2

Definition: Let $I \subseteq \mathbb{R}$ be interval. Mapping that for every $t \in I$ uniquely assigns an ordered pair of numbers $(\varphi_1(t), \varphi_2(t))$ is called a mapping of interval *I* to the plane \mathbb{R}^2 . We denote

$$\varphi: I \to \mathbb{R}^2$$

$$\varphi: t \mapsto (\varphi_1(t), \varphi_2(t)) = (x(t), y(t))$$

We refer to φ_1, φ_2 as coordinate functions, if they are continuous/differentiable, we say that φ is continuous/differentiable. We define the derivative φ' of map φ as

 $\varphi'(t) = (\varphi'_1(t), \varphi'_2(t)), \quad t \in I$

Note: $\varphi'(t)$ is again map $\varphi' : I \to \mathbb{R}^2$.

Planar curve

Definition:

Let $\varphi(t) = (\varphi_1(t), \varphi_2(t))$ be continuous mapping of interval *I* to \mathbb{R}^2 , then the set

$$\mathcal{K} = \{\varphi(t) | t \in I\} = \{(x, y) \in \mathbb{R}^2 | x = \varphi_1(t), y = \varphi_2(t)\}.$$

is called planar curve \mathcal{K} .

Planar curve

Definition:

Let $\varphi(t) = (\varphi_1(t), \varphi_2(t))$ be continuous mapping of interval *I* to \mathbb{R}^2 , then the set

$$\mathcal{K} = \{\varphi(t) | t \in I\} = \{(x, y) \in \mathbb{R}^2 | x = \varphi_1(t), y = \varphi_2(t)\}.$$

is called planar curve \mathcal{K} .

We refer to φ as a parametrization of \mathcal{K} and the equations

$$\begin{aligned} x &= \varphi_1(t) \\ y &= \varphi_2(t), \quad t \in I \end{aligned}$$

are called parametric equations of \mathcal{K} .

Remark: Parametrization of a given curve is not unique.

Planar curves - kinematic interpretation

Remark:

Kinematic interpretation - **movement of a particle in plane** dependent on time, i.e. $(x, y) = (\varphi_1(t), \varphi_2(t))$ position of a particle at time *t*:

Remark:

Kinematic interpretation - **movement of a particle in plane** dependent on time, i.e. $(x, y) = (\varphi_1(t), \varphi_2(t))$ position of a particle at time *t*:

$$(x, y) = (\varphi_1(t), \varphi_2(t)) \sim$$
 kinematic equations

Remark:

Kinematic interpretation - **movement of a particle in plane dependent on time**, i.e. $(x, y) = (\varphi_1(t), \varphi_2(t))$ position of a particle at time *t*:

 $(x, y) = (\varphi_1(t), \varphi_2(t)) \sim$ kinematic equations Curve $\mathcal{K} \sim$ trajectory/path taken (set of points in plane)

Important examples of plane curves

■ Line and its segments For A ∈ p given point and u directional vector of p, then one of possible parameterizations is

$$p: X(t) = A + t \cdot \vec{u}, t \in \mathbb{R}$$

Circle and its parts
For k circle with center at point C = [x₀, y₀] and radius r with equation (x - x₀)² + (y - y₀)² = r², then
C: x = x₀ + r cos t,

$$y = y_0 + r \sin t, \ t \in \langle 0, 2\pi \rangle$$

Ellipse

For *e* ellipse with center $C = [x_0, y_0]$ with semi-minor and semi-major axes *a*, *b* with equation $\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$, then

$$e: x = x_0 + a\cos t,$$

$$y = y_0 + b\sin t, t \in \langle 0, 2\pi \rangle$$

Important examples of plane curves

If $\varphi_1(t)$, $t \in I$ is injective function $\Rightarrow t = \varphi_1^{-1}(x)$, $x \in H(\varphi_1)$

$$\Rightarrow y = \varphi_2(t) = \varphi_2(\varphi_1^{-1}(x)), x \in H(\varphi_1)$$

whence \mathcal{K} is graph of a function y = f(x).

- Similarly, if $\varphi_2(t), t \in I$ is injective \Rightarrow
 - $\Rightarrow \mathcal{K}$ is graph of a function x = f(y).

Definition: Let φ be a parametrization of curve \mathcal{K} . The

$$\vec{\mathbf{v}}(t_0) = \varphi'(t_0) = (\varphi'_1(t_0), \varphi'_2(t_0))$$

is the tangent vector to the curve \mathcal{K} at $t = t_0$.

Definition: Let φ be a parametrization of curve \mathcal{K} . The

 $\vec{\mathbf{v}}(t_0) = \varphi'(t_0) = (\varphi_1'(t_0), \varphi_2'(t_0))$

is the tangent vector to the curve \mathcal{K} at $t = t_0$.

geometric interpretation: $\vec{v}(t_0) = \varphi'(t_0)$ is tangent vector to the curve \mathcal{K} at point $\varphi(t_0)$; $\vec{v}(t_0)$ is directional vector of the tangent line to curve \mathcal{K} at point $\varphi(t_0)$;

Definition: Let φ be a parametrization of curve \mathcal{K} . The

 $\vec{\mathbf{v}}(t_0) = \varphi'(t_0) = (\varphi_1'(t_0), \varphi_2'(t_0))$

is the tangent vector to the curve \mathcal{K} at $t = t_0$.

geometric interpretation: $\vec{v}(t_0) = \varphi'(t_0)$ is tangent vector to the curve \mathcal{K} at point $\varphi(t_0)$; $\vec{v}(t_0)$ is directional vector of the tangent line to curve \mathcal{K} at point $\varphi(t_0)$;

• **kinematic interpretation**: $\vec{v}(t_0)$ is vector of instanteneous velocity of particle at point $\varphi(t_0)$ moving according to the parametrization along \mathcal{K}

Definition: Let φ be a parametrization of curve \mathcal{K} . The

 $\vec{\mathbf{v}}(t_0) = \varphi'(t_0) = (\varphi_1'(t_0), \varphi_2'(t_0))$

is the tangent vector to the curve \mathcal{K} at $t = t_0$.

geometric interpretation: $\vec{v}(t_0) = \varphi'(t_0)$ is tangent vector to the curve \mathcal{K} at point $\varphi(t_0)$; $\vec{v}(t_0)$ is directional vector of the tangent line to curve \mathcal{K} at point $\varphi(t_0)$;

• **kinematic interpretation**: $\vec{v}(t_0)$ is vector of instanteneous velocity of particle at point $\varphi(t_0)$ moving according to the parametrization along \mathcal{K}