Parametric equations of planar curves

Mapping from \mathbb{R} to \mathbb{R}^{2}

Definition: Let $I \subseteq \mathbb{R}$ be interval. Mapping that for every $t \in I$ uniquely assigns an ordered pair of numbers $\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ is called a mapping of interval I to the plane \mathbb{R}^{2}. We denote

$$
\begin{gathered}
\varphi: I \rightarrow \mathbb{R}^{2} \\
\varphi: t \mapsto\left(\varphi_{1}(t), \varphi_{2}(t)\right)=(x(t), y(t))
\end{gathered}
$$

Mapping from \mathbb{R} to \mathbb{R}^{2}

Definition: Let $I \subseteq \mathbb{R}$ be interval. Mapping that for every $t \in I$ uniquely assigns an ordered pair of numbers $\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ is called a mapping of interval / to the plane \mathbb{R}^{2}. We denote

$$
\begin{gathered}
\varphi: I \rightarrow \mathbb{R}^{2} \\
\varphi: t \mapsto\left(\varphi_{1}(t), \varphi_{2}(t)\right)=(x(t), y(t))
\end{gathered}
$$

We refer to φ_{1}, φ_{2} as coordinate functions, if they are continuous/differentiable, we say that φ is continuous/differentiable. We define the derivative φ^{\prime} of $\operatorname{map} \varphi$ as

$$
\varphi^{\prime}(t)=\left(\varphi_{1}^{\prime}(t), \varphi_{2}^{\prime}(t)\right), \quad t \in I
$$

Note: $\varphi^{\prime}(t)$ is again map $\varphi^{\prime}: I \rightarrow \mathbb{R}^{2}$.

Planar curve

Definition:

Let $\varphi(t)=\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ be continuous mapping of interval $/$ to \mathbb{R}^{2}, then the set

$$
\mathcal{K}=\{\varphi(t) \mid t \in I\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=\varphi_{1}(t), y=\varphi_{2}(t)\right\} .
$$

is called planar curve \mathcal{K}.

Planar curve

Definition:

Let $\varphi(t)=\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ be continuous mapping of interval $/$ to \mathbb{R}^{2}, then the set

$$
\mathcal{K}=\{\varphi(t) \mid t \in I\}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=\varphi_{1}(t), y=\varphi_{2}(t)\right\} .
$$

is called planar curve \mathcal{K}.
We refer to φ as a parametrization of \mathcal{K} and the equations

$$
\begin{aligned}
& x=\varphi_{1}(t) \\
& y=\varphi_{2}(t), \quad t \in I
\end{aligned}
$$

are called parametric equations of \mathcal{K}.
Remark: Parametrization of a given curve is not unique.

Planar curves - kinematic interpretation

Planar curves - kinematic interpretation

Remark:
Kinematic interpretation - movement of a particle in plane dependent on time, i.e. $(x, y)=\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ position of a particle at time t :

Planar curves - kinematic interpretation

Remark:
Kinematic interpretation - movement of a particle in plane dependent on time, i.e. $(x, y)=\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ position of a particle at time t :
$(x, y)=\left(\varphi_{1}(t), \varphi_{2}(t)\right) \quad \sim$ kinematic equations

Planar curves - kinematic interpretation

Remark:

Kinematic interpretation - movement of a particle in plane dependent on time, i.e. $(x, y)=\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ position of a particle at time t :
$(x, y)=\left(\varphi_{1}(t), \varphi_{2}(t)\right) \sim$ kinematic equations
Curve $\mathcal{K} \sim$ trajectory/path taken (set of points in plane)

Important examples of plane curves

■ Line and its segments
For $A \in p$ given point and \vec{u} directional vector of p, then one of possible parameterizations is

$$
p: X(t)=A+t \cdot \vec{u}, t \in \mathbb{R}
$$

- Circle and its parts

For k circle with center at point $C=\left[x_{0}, y_{0}\right]$ and radius r with equation $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$, then

$$
\begin{aligned}
C: x & =x_{0}+r \cos t \\
y & =y_{0}+r \sin t, t \in\langle 0,2 \pi\rangle
\end{aligned}
$$

- Ellipse

For \boldsymbol{e} ellipse with center $C=\left[x_{0}, y_{0}\right]$ with semi-minor and semi-major axes a, b with equation $\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1$, then

$$
\begin{aligned}
e: x & =x_{0}+a \cos t \\
y & =y_{0}+b \sin t, t \in\langle 0,2 \pi\rangle
\end{aligned}
$$

Important examples of plane curves

- If $\varphi_{1}(t), t \in I$ is injective function $\Rightarrow t=\varphi_{1}^{-1}(x)$, $x \in H\left(\varphi_{1}\right)$

$$
\Rightarrow \quad y=\varphi_{2}(t)=\varphi_{2}\left(\varphi_{1}^{-1}(x)\right), x \in H\left(\varphi_{1}\right)
$$

whence \mathcal{K} is graph of a function $y=f(x)$.
■ Similarly, if $\varphi_{2}(t), t \in I$ is injective \Rightarrow
$\Rightarrow \mathcal{K}$ is graph of a function $x=f(y)$.

Tangent vector

Tangent vector

Definition: Let φ be a parametrization of curve \mathcal{K}. The

$$
\vec{v}\left(t_{0}\right)=\varphi^{\prime}\left(t_{0}\right)=\left(\varphi_{1}^{\prime}\left(t_{0}\right), \varphi_{2}^{\prime}\left(t_{0}\right)\right)
$$

is the tangent vector to the curve \mathcal{K} at $t=t_{0}$.

Tangent vector

Definition: Let φ be a parametrization of curve \mathcal{K}. The

$$
\vec{v}\left(t_{0}\right)=\varphi^{\prime}\left(t_{0}\right)=\left(\varphi_{1}^{\prime}\left(t_{0}\right), \varphi_{2}^{\prime}\left(t_{0}\right)\right)
$$

is the tangent vector to the curve \mathcal{K} at $t=t_{0}$.

- geometric interpretation: $\vec{v}\left(t_{0}\right)=\varphi^{\prime}\left(t_{0}\right)$ is tangent vector to the curve \mathcal{K} at point $\varphi\left(t_{0}\right) ;$ $\vec{v}\left(t_{0}\right)$ is directional vector of the tangent line to curve \mathcal{K} at point $\varphi\left(t_{0}\right)$;

Tangent vector

Definition: Let φ be a parametrization of curve \mathcal{K}. The

$$
\vec{v}\left(t_{0}\right)=\varphi^{\prime}\left(t_{0}\right)=\left(\varphi_{1}^{\prime}\left(t_{0}\right), \varphi_{2}^{\prime}\left(t_{0}\right)\right)
$$

is the tangent vector to the curve \mathcal{K} at $t=t_{0}$.
■ geometric interpretation:
$\vec{v}\left(t_{0}\right)=\varphi^{\prime}\left(t_{0}\right)$ is tangent vector to the curve \mathcal{K} at point $\varphi\left(t_{0}\right) ;$ $\vec{v}\left(t_{0}\right)$ is directional vector of the tangent line to curve \mathcal{K} at point $\varphi\left(t_{0}\right)$;

■ kinematic interpretation: $\vec{v}\left(t_{0}\right)$ is vector of instanteneous velocity of particle at point $\varphi\left(t_{0}\right)$ moving according to the parametrization along \mathcal{K}

Tangent vector

Definition: Let φ be a parametrization of curve \mathcal{K}. The

$$
\vec{v}\left(t_{0}\right)=\varphi^{\prime}\left(t_{0}\right)=\left(\varphi_{1}^{\prime}\left(t_{0}\right), \varphi_{2}^{\prime}\left(t_{0}\right)\right)
$$

is the tangent vector to the curve \mathcal{K} at $t=t_{0}$.
■ geometric interpretation:
$\vec{v}\left(t_{0}\right)=\varphi^{\prime}\left(t_{0}\right)$ is tangent vector to the curve \mathcal{K} at point $\varphi\left(t_{0}\right) ;$ $\vec{v}\left(t_{0}\right)$ is directional vector of the tangent line to curve \mathcal{K} at point $\varphi\left(t_{0}\right)$;

■ kinematic interpretation: $\vec{v}\left(t_{0}\right)$ is vector of instanteneous velocity of particle at point $\varphi\left(t_{0}\right)$ moving according to the parametrization along \mathcal{K}

