Continuity and limits of functions

Neighbourhoods

Notation: $a \in \mathbb{R}, \ \varepsilon > 0$

 $\mathcal{O}^+_{\varepsilon}(a) = \langle a, a + \varepsilon \rangle$ right neighbourhood, $\mathcal{O}^-_{\varepsilon}(a) = (a - \varepsilon, a)$ left

Neighbourhoods

Notation: $a \in \mathbb{R}, \ \varepsilon > 0$ $\square \ \mathcal{O}_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon) \quad \varepsilon$ -neighbourhood of the point a

 $\mathcal{O}^+_{\varepsilon}(a) = \langle a, a + \varepsilon \rangle$ right neighbourhood, $\mathcal{O}^-_{\varepsilon}(a) = (a - \varepsilon, a)$ left

■ $\mathcal{P}_{\varepsilon}(a) = \mathcal{O}_{\varepsilon}(a) \setminus \{a\}$ punctured ε neighbourhood of a $\mathcal{P}_{\varepsilon}^{+}(a) = (a, a+\varepsilon)$ right punctured, $\mathcal{P}_{\varepsilon}^{-}(a) = (a-\varepsilon, a)$ left puncture

Neighbourhoods

Notation: a ∈ ℝ, ε > 0
O_ε(a) = (a − ε, a + ε) ε-neighbourhood of the point a
O⁺_ε(a) = ⟨a, a + ε⟩ right neighbourhood, O⁻_ε(a) = (a − ε, a⟩ left
P_ε(a) = O_ε(a) \ {a} punctured ε neighbourhood of a
P⁺_ε(a) = (a, a+ε) right punctured, P⁻_ε(a) = (a−ε, a) left punctured

 x → a x tends to a id est x takes values arbitrarily close to a Similarly: x → a+, x → a-, x → +∞, x → -∞

Continuity at a point

Definition: Let *f* be function defined in a neighbourhood O(a) of the point *a*. We say that *f* is continuous at the point $a \in D(f)$, iff

 $\forall \varepsilon > \mathbf{0} \exists \delta > \mathbf{0}$ such that $f(\mathcal{O}_{\delta}(a)) \subseteq \mathcal{O}_{\varepsilon}(f(a))$

Roughly: At points "close to" *a* has *f* values "close to" *f*(*a*).

Limit of a function

Limit of a function

Definition: Let $a \in \mathbb{R}$ and let f be defined on some punctured neighbourhood $\mathcal{P}(a) \subseteq D(f)$. We say that function f has the limit $L \in \mathbb{R}$ at point *a* if $\forall \varepsilon > \mathbf{0} \exists \delta > \mathbf{0}$ such that $f(\mathcal{P}_{\delta}(\mathbf{a})) \subset \mathcal{O}_{\varepsilon}(L)$. We write $\lim_{x\to a} f(x) = L.$ **Roughly:** At points "close to" *a*, function *f* has values "close to" L. $x \to a \Rightarrow f(x) \to L$

Limit of a function

Definition: Let $a \in \mathbb{R}$ and let f be defined on some punctured neighbourhood $\mathcal{P}(a) \subseteq D(f)$. We say that function f has the limit $L \in \mathbb{R}$ at point *a* if $\forall \varepsilon > \mathbf{0} \exists \delta > \mathbf{0}$ such that $f(\mathcal{P}_{\delta}(\mathbf{a})) \subset \mathcal{O}_{\varepsilon}(L)$. We write $\lim_{x\to a} f(x) = L.$ **Roughly:** At points "close to" *a*, function *f* has values "close to" L. $x \rightarrow a \Rightarrow f(x) \rightarrow L$

Theorem:

Function *f* is continuous at point *a* if and only if $\lim_{x\to a} f(x) = f(a)$.

I. If $a, L \in \mathbb{R}$, we say proper limit at proper point e.g. $\lim_{x \to \pi} \cos(x) = -1$

I. If $a, L \in \mathbb{R}$, we say proper limit at proper point e.g. $\lim_{x \to \pi} \cos(x) = -1$

II. If $a \in \mathbb{R}$, $L = \pm \infty$... improper limit at proper point

e.g.
$$\lim_{x\to 0+} \ln(x) = -\infty$$

I. If $a, L \in \mathbb{R}$, we say proper limit at proper point e.g. $\lim_{x \to \pi} \cos(x) = -1$

II. If $a \in \mathbb{R}$, $L = \pm \infty$... improper limit at proper point

e.g.
$$\lim_{x\to 0+} \ln(x) = -\infty$$

III. If $a = \pm \infty$, $L \in \mathbb{R}$... proper limit at improper point

e.g.
$$\lim_{x\to\infty} \arctan(x) = \frac{\pi}{2}$$

I. If $a, L \in \mathbb{R}$, we say proper limit at proper point e.g. $\lim_{x \to \pi} \cos(x) = -1$

II. If $a \in \mathbb{R}$, $L = \pm \infty$... improper limit at proper point

e.g.
$$\lim_{x\to 0+} \ln(x) = -\infty$$

III. If $a = \pm \infty$, $L \in \mathbb{R}$... proper limit at improper point

e.g.
$$\lim_{x\to\infty} \arctan(x) = \frac{\pi}{2}$$

IV. If $a, L = \pm \infty$... improper limit at improper point

e.g.
$$\lim_{x\to\infty} e^x = \infty$$

Improper limits - case II

Definice: Let *f* be defined on *P*(*a*) then
(i) lim _{x→a} *f*(*x*) = ∞, if
∀ *K* > 0 ∃δ > 0 such that ∀ *x* ∈ *P*_δ(*a*) is *f*(*x*) > *K*(ii) lim _{x→a} *f*(*x*) = -∞, if
∀ *L* < 0 ∃δ > 0 such that ∀ *x* ∈ *P*_δ(*a*) is *f*(*x*) < *L*

Proper limit at improper point - case III

Proper limit at improper point - case III

Definition:

(i)
$$\lim_{x \to \infty} f(x) = \infty$$

 $\forall K > 0 \exists x_1 > 0$ such that $\forall x > x_1$ it holds $f(x) > K$.

Definition:

(i) $\lim_{x \to \infty} f(x) = \infty$ $\forall K > 0 \exists x_1 > 0$ such that $\forall x > x_1$ it holds f(x) > K. (ii) $\lim_{x \to \infty} f(x) = -\infty$ $\forall L < 0 \exists x_1 > 0$ such that $\forall x > x_1$ it holds f(x) < L.

Definition:

(i) $\lim_{x\to\infty} f(x) = \infty$ $\forall K > 0 \exists x_1 > 0$ such that $\forall x > x_1$ it holds f(x) > K. (ii) $\lim_{x \to \infty} f(x) = -\infty$ $\forall L < 0 \exists x_1 > 0$ such that $\forall x > x_1$ it holds f(x) < L. (iii) $\lim_{x \to -\infty} f(x) = \infty$ $\forall K > 0 \exists x_2 < 0$ such that $\forall x < x_2$ it holds f(x) > K.

Definition:

(i) $\lim_{x\to\infty} f(x) = \infty$ $\forall K > 0 \exists x_1 > 0$ such that $\forall x > x_1$ it holds f(x) > K. (ii) $\lim_{x \to \infty} f(x) = -\infty$ $\forall L < 0 \exists x_1 > 0$ such that $\forall x > x_1$ it holds f(x) < L. (iii) $\lim_{x \to -\infty} f(x) = \infty$ $\forall K > 0 \exists x_2 < 0$ such that $\forall x < x_2$ it holds f(x) > K. (iv) $\lim_{x \to -\infty} f(x) = -\infty$ $\forall L < 0 \exists x_2 < 0$ such that $\forall x < x_2$ it holds f(x) < L.

Calculating the limits

Theorem: Let $\lim_{x \to a} f(x) = A$ and $\lim_{x \to a} g(x) = B$, $(a, A, B \in \mathbb{R} \cup \pm \infty)$. Then:

•
$$\lim_{x \to a} (f(x) \pm g(x)) = A \pm B$$
, • $\lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B$

•
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$

if the right hand side has sense - see "arithmetics of infinity" and
"dividing by zero".

Calculating the limits

The following rules are abbreviations for the assertions in the sense of previous theorem

"Arithmetics of infinity": $C \in \mathbb{R}, C > 0$.

$$\infty + C = \infty \qquad \infty \cdot C = \infty$$
$$\infty - C = \infty \qquad \infty \cdot (-C) = -\infty$$
$$\infty + \infty = \infty \qquad -\infty \cdot C = -\infty$$
$$-\infty - \infty = -\infty \qquad -\infty \cdot (-C) = \infty$$
$$-\infty + C = -\infty \qquad -\infty \cdot (-C) = \infty$$
$$-\infty - C = -\infty \qquad \infty \cdot \infty = \infty$$
$$(-\infty) = -\infty \qquad (-\infty) = -\infty$$
$$(-\infty) \cdot (-\infty) = \infty$$
$$\infty - \infty = ??? \qquad \infty \cdot 0 = ???$$
$$\frac{C}{\pm \infty} = \frac{-C}{\pm \infty} = \frac{0}{\pm \infty} = 0 \qquad \frac{\infty}{\infty} = ???$$

Calculating the limits

"Dividing by zero": $C \in \mathbb{R}$, C > 0.

$$\begin{array}{rcl}
\frac{C}{0+} &=& \infty & & \frac{\infty}{0+} &=& \infty \\
\frac{-C}{0+} &=& -\infty & & \frac{\infty}{0-} &=& -\infty \\
\frac{C}{0-} &=& -\infty & & \frac{-\infty}{0+} &=& -\infty \\
\frac{-C}{0-} &=& \infty & & \frac{-\infty}{0-} &=& \infty \\
\frac{-C}{0-} &=& \infty & & \frac{-\infty}{0-} &=& \infty \\
\frac{0}{0} &=& ???
\end{array}$$

Indeterminate forms:

$$\frac{0}{0}, \quad \frac{\infty}{\infty}, \quad 0 \cdot \infty, \quad \infty - \infty$$

... will be calculated by simplifying the expression or by the l'Hospital rule

Limit of sequence

Definition: $\lim_{n \to \infty} a_n = L \in \mathbb{R} \text{ (proper limit), if}$ $\forall \varepsilon \exists n_0 \in \mathbb{N} \text{ such that } \forall n > n_0 \text{ it holds} a_n \in \mathcal{O}_{\varepsilon}(L).$

Limit of sequence

Definition: $\lim_{n \to \infty} a_n = L \in \mathbb{R} \text{ (proper limit), if}$ $\forall \varepsilon \exists n_0 \in \mathbb{N} \text{ such that } \forall n > n_0 \text{ it holds } a_n \in \mathcal{O}_{\varepsilon}(L) \text{ .}$ $\lim_{n \to \infty} a_n = \infty / -\infty \text{ (improper limit), if}$ $\forall K > 0 \exists n_0 \in \mathbb{N} \text{ such that } \forall n \ge n_0 \text{ it holds } a_n > K \text{ ,}$ $\forall K < 0 \exists n_0 \in \mathbb{N} \text{ such that} \forall n \ge n_0 \text{ it holds } a_n < K \text{ .}$

Limit of sequence

Definition: lim $a_n = L \in \mathbb{R}$ (proper limit), if $n \rightarrow \infty$ $\forall \varepsilon \exists n_0 \in \mathbb{N}$ such that $\forall n > n_0$ it holds $a_n \in \mathcal{O}_{\varepsilon}(L)$. $\lim_{n\to\infty} a_n = \infty / -\infty$ (improper limit), if $\forall K > 0 \exists n_0 \in \mathbb{N}$ such that $\forall n \ge n_0$ it holds $a_n > K$, $\forall K < 0 \exists n_0 \in \mathbb{N}$ such that $\forall n > n_0$ it holds $a_n < K$.

 $L \in \mathbb{R}$... convergent sequence $L = \pm \infty$ or the limit does not exist ... divergent sequence

Euler's number

It can be proven that the following limit exists and it is finite

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n.$$

Definition: Denote

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Number $e \doteq 2,71828$ is called Euler's number.