Continuity and limits of functions

Neighbourhoods

Notation: $a \in \mathbb{R}, \varepsilon>0$
$\square \mathcal{O}_{\varepsilon}(a)=(a-\varepsilon, a+\varepsilon) \quad \varepsilon$-neighbourhood of the point a
$\mathcal{O}_{\varepsilon}^{+}(a)=\langle a, a+\varepsilon)$ right neighbourhood, $\mathcal{O}_{\varepsilon}^{-}(a)=(a-\varepsilon, a\rangle$ left

Neighbourhoods

Notation: $a \in \mathbb{R}, \varepsilon>0$
■ $\mathcal{O}_{\varepsilon}(a)=(a-\varepsilon, a+\varepsilon) \quad \varepsilon$-neighbourhood of the point a $\mathcal{O}_{\varepsilon}^{+}(a)=\langle a, a+\varepsilon)$ right neighbourhood, $\mathcal{O}_{\varepsilon}^{-}(a)=(a-\varepsilon, a\rangle$ left
$\square \mathcal{P}_{\varepsilon}(a)=\mathcal{O}_{\varepsilon}(a) \backslash\{a\} \quad$ punctured ε neighbourhood of a $\mathcal{P}_{\varepsilon}^{+}(a)=(a, a+\varepsilon)$ right punctured, $\mathcal{P}_{\varepsilon}^{-}(a)=(a-\varepsilon, a)$ left puncture

Neighbourhoods

Notation: $a \in \mathbb{R}, \varepsilon>0$
■ $\mathcal{O}_{\varepsilon}(a)=(a-\varepsilon, a+\varepsilon) \quad \varepsilon$-neighbourhood of the point a
$\mathcal{O}_{\varepsilon}^{+}(a)=\langle a, a+\varepsilon)$ right neighbourhood, $\mathcal{O}_{\varepsilon}^{-}(a)=(a-\varepsilon, a\rangle$ left
$\square \mathcal{P}_{\varepsilon}(a)=\mathcal{O}_{\varepsilon}(a) \backslash\{a\} \quad$ punctured ε neighbourhood of a $\mathcal{P}_{\varepsilon}^{+}(a)=(a, a+\varepsilon)$ right punctured, $\mathcal{P}_{\varepsilon}^{-}(a)=(a-\varepsilon, a)$ left puncture
$\square x \rightarrow a \quad x$ tends to a
id est x takes values arbitrarily close to a Similarly: $x \rightarrow a+, x \rightarrow a-, x \rightarrow+\infty, x \rightarrow-\infty$

Continuity at a point

Continuity at a point

Definition: Let f be function defined in a neighbourhood $\mathcal{O}(a)$ of the point a. We say that f is continuous at the point $a \in D(f)$, iff
$\forall \varepsilon>0 \exists \delta>0$ such that $f\left(\mathcal{O}_{\delta}(a)\right) \subseteq \mathcal{O}_{\varepsilon}(f(a))$
Roughly: At points "close to" a has f values "close to" $f(a)$.

Limit of a function

Limit of a function

Definition:

Let $a \in \mathbb{R}$ and let f be defined on some punctured neighbourhood $\mathcal{P}(a) \subseteq D(f)$. We say that function f has the limit $L \in \mathbb{R}$ at point a if
$\forall \varepsilon>0 \exists \delta>0$ such that $f\left(\mathcal{P}_{\delta}(a)\right) \subset \mathcal{O}_{\varepsilon}(L)$.
We write

$$
\lim _{x \rightarrow a} f(x)=L .
$$

Roughly: At points "close to" a , function f has values "close to" L.

$$
x \rightarrow a \Rightarrow f(x) \rightarrow L
$$

Limit of a function

Definition:

Let $a \in \mathbb{R}$ and let f be defined on some punctured neighbourhood $\mathcal{P}(a) \subseteq D(f)$. We say that function f has the limit $L \in \mathbb{R}$ at point a if
$\forall \varepsilon>0 \exists \delta>0$ such that $f\left(\mathcal{P}_{\delta}(a)\right) \subset \mathcal{O}_{\varepsilon}(L)$.
We write

$$
\lim _{x \rightarrow a} f(x)=L .
$$

Roughly: At points "close to" a , function f has values "close to" L.

$$
x \rightarrow a \Rightarrow f(x) \rightarrow L
$$

Theorem:

Function f is continuous at point a if and only if $\lim _{x \rightarrow a} f(x)=$ $f(a)$.
$\lim _{x \rightarrow a} f(x)=L$

$\lim _{x \rightarrow a} f(x)=L$

I. If $a, L \in \mathbb{R}$, we say proper limit at proper point

$$
\text { e.g. } \lim _{x \rightarrow \pi} \cos (x)=-1
$$

$\lim _{x \rightarrow a} f(x)=L$

I. If a, $L \in \mathbb{R}$, we say proper limit at proper point

$$
\text { e.g. } \lim _{x \rightarrow \pi} \cos (x)=-1
$$

II. If $a \in \mathbb{R}, L= \pm \infty \ldots$ improper limit at proper point

$$
\text { e.g. } \lim _{x \rightarrow 0+} \ln (x)=-\infty
$$

$\lim _{x \rightarrow a} f(x)=L$

I. If $a, L \in \mathbb{R}$, we say proper limit at proper point

$$
\text { e.g. } \lim _{x \rightarrow \pi} \cos (x)=-1
$$

II. If $a \in \mathbb{R}, L= \pm \infty \ldots$ improper limit at proper point

$$
\text { e.g. } \lim _{x \rightarrow 0+} \ln (x)=-\infty
$$

III. If $a= \pm \infty, L \in \mathbb{R} \ldots$ proper limit at improper point

$$
\text { e.g. } \lim _{x \rightarrow \infty} \operatorname{arctg}(x)=\frac{\pi}{2}
$$

$\lim _{x \rightarrow a} f(x)=L$

I. If $a, L \in \mathbb{R}$, we say proper limit at proper point

$$
\text { e.g. } \lim _{x \rightarrow \pi} \cos (x)=-1
$$

II. If $a \in \mathbb{R}, L= \pm \infty \ldots$ improper limit at proper point

$$
\text { e.g. } \lim _{x \rightarrow 0+} \ln (x)=-\infty
$$

III. If $a= \pm \infty, L \in \mathbb{R} \ldots$ proper limit at improper point

$$
\text { e.g. } \lim _{x \rightarrow \infty} \operatorname{arctg}(x)=\frac{\pi}{2}
$$

IV. If $a, L= \pm \infty \ldots$ improper limit at improper point

$$
\text { e.g. } \lim _{x \rightarrow \infty} \mathrm{e}^{x}=\infty
$$

Improper limits - case II

Improper limits - case II

Definice: Let f be defined on $\mathcal{P}(a)$ then
(i) $\lim _{x \rightarrow a} f(x)=\infty$, if

$$
\forall K>0 \exists \delta>0 \text { such that } \forall x \in \mathcal{P}_{\delta}(a) \text { is } f(x)>K
$$

(ii) $\lim _{x \rightarrow a} f(x)=-\infty$, if

$$
\forall L<0 \exists \delta>0 \text { such that } \forall x \in \mathcal{P}_{\delta}(a) \text { is } f(x)<L
$$

Proper limit at improper point - case III

Proper limit at improper point - case III

Definition:

if

$$
\lim _{x \rightarrow \infty} f(x)=L_{1}
$$

$$
\forall \varepsilon \exists x_{1}>0 \text { such that } \forall x>x_{1} \text { holds } f(x) \in \mathcal{O}_{\varepsilon}\left(L_{1}\right)
$$

Similarly:

if

$$
\lim _{x \rightarrow-\infty} f(x)=L_{2}
$$

$\forall \varepsilon \exists x_{2}<0$ such that $\forall x<x_{2}$ holds $f(x) \in \mathcal{O}_{\varepsilon}\left(L_{2}\right)$

Improper limits at improper points - case IV

Improper limits at improper points - case IV

Definition:

(i) $\lim _{x \rightarrow \infty} f(x)=\infty$
$\forall K>0 \exists x_{1}>0$ such that $\forall x>x_{1}$ it holds $f(x)>K$.

Improper limits at improper points - case IV

Definition:

(i) $\lim _{x \rightarrow \infty} f(x)=\infty$
$\forall K>0 \exists x_{1}>0$ such that $\forall x>x_{1}$ it holds $f(x)>K$.
(ii) $\lim _{x \rightarrow \infty} f(x)=-\infty$
$\forall L<0 \exists x_{1}>0$ such that $\forall x>x_{1}$ it holds $f(x)<L$.

Improper limits at improper points - case IV

Definition:

(i) $\lim _{x \rightarrow \infty} f(x)=\infty$
$\forall K>0 \exists x_{1}>0$ such that $\forall x>x_{1}$ it holds $f(x)>K$.
(ii) $\lim _{x \rightarrow \infty} f(x)=-\infty$
$\forall L<0 \exists x_{1}>0$ such that $\forall x>x_{1}$ it holds $f(x)<L$.
(iii) $\lim _{x \rightarrow-\infty} f(x)=\infty$
$\forall K>0 \exists x_{2}<0$ such that $\forall x<x_{2}$ it holds $f(x)>K$.

Improper limits at improper points - case IV

Definition:

(i) $\lim _{x \rightarrow \infty} f(x)=\infty$
$\forall K>0 \exists x_{1}>0$ such that $\forall x>x_{1}$ it holds $f(x)>K$.
(ii) $\lim _{x \rightarrow \infty} f(x)=-\infty$
$\forall L<0 \exists x_{1}>0$ such that $\forall x>x_{1}$ it holds $f(x)<L$.
(iii) $\lim _{x \rightarrow-\infty} f(x)=\infty$
$\forall K>0 \exists x_{2}<0$ such that $\forall x<x_{2}$ it holds $f(x)>K$.
(iv) $\lim _{x \rightarrow-\infty} f(x)=-\infty$
$\forall L<0 \exists x_{2}<0$ such that $\forall x<x_{2}$ it holds $f(x)<L$.

Calculating the limits

Theorem: Let $\lim _{x \rightarrow a} f(x)=A$ and $\lim _{x \rightarrow a} g(x)=B, \quad(a, A, B \in \mathbb{R} \cup \pm \infty)$. Then:

- $\lim _{x \rightarrow a}(f(x) \pm g(x))=A \pm B, \quad$ - $\lim _{x \rightarrow a}(f(x) \cdot g(x))=A \cdot B$
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{A}{B}$
if the right hand side has sense - see "arithmetics of infinity" and "dividing by zero".

Calculating the limits

The following rules are abbreviations for the assertions in the sense of previous theorem
"Arithmetics of infinity": $C \in \mathbb{R}, C>0$.

$$
\begin{aligned}
& \infty-\infty=? ? ? \\
& \frac{C}{ \pm \infty}=\frac{-C}{ \pm \infty}=\frac{0}{ \pm \infty}=0 \\
& \frac{\infty}{\infty}=\text { ??? }
\end{aligned}
$$

Calculating the limits

"Dividing by zero": $C \in \mathbb{R}, C>0$.

$$
\begin{aligned}
\frac{c}{0+} & =\infty & \frac{\infty}{0+} & =\infty \\
\frac{-C}{0+} & =-\infty & \frac{\infty}{0-} & =-\infty \\
\frac{c}{0-} & =-\infty & \frac{-\infty}{0+} & =-\infty \\
\frac{-C}{0-} & =\infty & \frac{-\infty}{0-}= & \infty \\
\frac{0}{0} & =? ? ? & &
\end{aligned}
$$

Indeterminate forms: $\frac{0}{0}, \quad \frac{\infty}{\infty}, 0 \cdot \infty, \infty-\infty$
... will be calculated by simplifying the expression or by the l'Hospital rule

Limit of sequence

Definition:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n}=L \in \mathbb{R} \text { (proper limit), if } \\
\forall \varepsilon \exists n_{0} \in \mathbb{N} \text { such that } \forall n>n_{0} \text { it holds } a_{n} \in \mathcal{O}_{\varepsilon}(L) .
\end{gathered}
$$

Limit of sequence

Definition:

$$
\lim _{n \rightarrow \infty} a_{n}=L \in \mathbb{R} \text { (proper limit), if }
$$

$\forall \varepsilon \exists n_{0} \in \mathbb{N}$ such that $\forall n>n_{0}$ it holds $a_{n} \in \mathcal{O}_{\varepsilon}(L)$.
$\lim _{n \rightarrow \infty} a_{n}=\infty /-\infty$ (improper limit), if
$\forall K>0 \exists n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0}$ it holds $a_{n}>K$,
$\forall K<0 \exists n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0}$ it holds $a_{n}<K$.

Limit of sequence

Definition:

$$
\lim _{n \rightarrow \infty} a_{n}=L \in \mathbb{R} \text { (proper limit), if }
$$

$\forall \varepsilon \exists n_{0} \in \mathbb{N}$ such that $\forall n>n_{0}$ it holds $a_{n} \in \mathcal{O}_{\varepsilon}(L)$.
$\lim _{n \rightarrow \infty} a_{n}=\infty /-\infty$ (improper limit), if
$\forall K>0 \exists n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0}$ it holds $a_{n}>K$,
$\forall K<0 \exists n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0}$ it holds $a_{n}<K$.
$L \in \mathbb{R} \ldots$ convergent sequence
$L= \pm \infty$ or the limit does not exist ... divergent sequence

Euler's number

It can be proven that the following limit exists and it is finite

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Definition: Denote

$$
\mathrm{e}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Number $\mathrm{e} \doteq 2,71828$ is called Euler's number.

