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Often in applications, the independent variable has the me-
aning of time, then the time derivative has the meaning of
instanteneous rate of change of the corresponding quantity.

Important: If y(t) is possition at time t , then y ′(t) is the in-
stanteneous velocity and y ′′(t) instanteneous accelaration.



Uniformly accelarated motion

For given accelaration a > 0 consider the following problem
with given initial position y0 and given initial velocity v0:

y ′′(t) = a, y(0) = y0, y ′(0) = v0.

Direct integration yields

y ′′(t) = a, ⇒ y ′(t) = at + C1,

y(t) =
1
2

at2 + C1t + C2,

and from the initial conditions we deduce C1 = v0, C2 = y0.

y(t) =
1
2

at2 + v0t + y0 (viz SŠ)

Remark: It is a 2nd order linear equation with constant coef-
ficients. How the characteristic equation looks like? The me-
thod of undetermined coefficients can be applied.



Harmonic oscilator

Denote: y = y(t) - deflection at time t ,
m - mass of the body, k - stiffness of the spring

Newton’s law F = ma = my ′′(t) Hooke’s law FH = −ky

Comparing the forces - the motion described by equation

my ′′ + ky = 0

y ′′ +
k
m

y = 0

ω :=

√
k
m

⇒ y ′′ + ω2y = 0

λ2 + ω2 = 0 ⇒ λ1,2 = ±ωi

General solution has the form

yOH = C1 cos(ωt) + C2 sin(ωt).



Resonance

Let us add a driving 2π
p -periodic force with p > 0

y ′′ + ω2y = sin(pt).

The method of undetermined coefficients can be used for the
particular solution of the non-homogeneous equation in the
form

yPN = tk(A cos(pt) + B sin(pt)
)
,

where k is the multiplicity of number pi as the root of
characteristic equation (λ2 + ω2 = 0).

In dependence on values of p and ω we consider two cases

p 6= ω

p = ω



Case p 6= ω

For p 6= ω is the number pi not a root of characteristic equation,
k = 0 and we get

yPN =
1

ω2 − p2 sin(pt),

yON = C1 cos(ωt) + C2 sin(ωt) +
1

ω2 − p2 sin(pt)

The solution is a bounded function, for any initial conditions.

Remark: For ω close to p the maximal amplitude of the solu-
tion grows (ω2 − p2 in denominator).



Case p = ω - resonance

In this case, the number pi = ωi is single root, k = 1 and one
can get

yPN = − 1
2ω

t cos(ωt)

and

yON = C1 cos(ωt) + C2 sin(ωt)− 1
2ω

t cos(ωt)

The solutionis for any initial condition unbounded, resonance
occurs.

Remark: The unboundedness of the solution is independent
of (positive) amplitude of the forcing, what matters is the co-
ordination of the periodicity of the forcing and the period of
the oscilator itself.



Illustration

Consider initial conditions y(0) = y ′(0) = 0, ω = 2 a four
different periods of the forcing.

p = 1

p = 1.8

When p approaches ω, the maximal amplitude grows.



Illustration

Consider initial conditions y(0) = y ′(0) = 0, ω = 2 and four
different periods of the forcing...

p = 2

p = 5



Damped oscilator

Consider damping proportional to the velocity: Fd = −cv , with
c > 0 damping coefficient

ma = FH + Ft ,

my ′′ = − ky − cy ′,
my ′′ + cy ′ + ky = 0,

y ′′ +
c
m

y ′ +
k
m

y = 0.

Denote: ω =

√
k
m
. . . period of oscillations without damping

ζ =
c

2
√

km
=

c
2mω

. . . damping ratio, then

y ′′ + 2ζωy ′ + ω2y = 0



Damped oscilator

y ′′ + 2ζωy ′ + ω2y = 0

It is a second order linear homogeneous equation with constant
coefficients.

Characteristic equation λ2 + 2ζωλ+ ω2λ = 0 has discriminant
equal

D = (2ζω)2 − 4ω2 = 4ω2(ζ2 − 1).

Let us consider three cases:
0 < ζ < 1
ζ = 1
ζ > 1



Case ζ < 1 - underdamped

D < 0, two complex roots

λ1,2 =
−2ζω ±

√
4ω2(ζ2 − 1)
2

= −ζω ± ω
√

1− ζ2 i

and general solution in the form

y(t) = e−ζωt
(

C1 cos
(
ω
√

1− ζ2 t
)
+ C2 sin

(
ω
√

1− ζ2 t
))

We can see the situation for ζ = 1
5 , ω = 2 a C1 = 2, C2 = 0, on the

figure.



Case ζ = 1 - critical damping

Characteristic equation has the form λ2 + 2ωλ+ ω2λ = 0 thus
we get one double root λ = −ω.
And general solution reads

y(t) = C1e−ωt + C2te−ωt ,

in particular for initial conditions y(0) = y0, y ′(0) = v0

y(t) =
(
y0(1 + ωt) + v0

)
e−ωt .

The situation for ω = 1 a y0 = 1, v0 = −2, is on the picture.



Case ζ > 1 - overdamped

Two distinct roots (both negative)

λ1,2 =
−2ζω ±

√
4ω2(ζ2 − 1)
2

= ω
(
−ζ ±

√
ζ2 − 1)

and general solution

y(t) = C1eλ1t + C2eλ2t ,

On the figure, ω = 1, ζ = 2 and C1 = 1, C2 = 1 is depicted.



Chemical kinetics

Consider simplest chemical reaction of order n driven by rate
equation

A′(t) = −k
(
A(t)

)n
,

where A(t) . . . concentration of the reactant at time t ,
k > 0 . . . reaction rate constant

We will consider three cases n ∈ {0,1,2}, always with initial
condition A(0) = A0 > 0.

Remark: In all cases, it is a separable differential equation of
the first order.



Case n = 0

Problem

A′ = −k ,
A(0) = A0

has unique solution
A(t) = A0 − kt ,

formula has good sense for t ≤ A0
k , where is the solution

non-negative.

In the remaining cases, the equation has one constant solution
A ≡ 0, thus consider only positive solutions.



Case n = 1

dA
dt

= − kA∫
1
A

dA = − k
∫

dt

ln(A) = − kt + ln(A0)

A(t) = A0e−kt , t ∈ R

Remark: Equation is in this case also linear homogeneous,
even with constant coefficients,it can be solved using the
characteristic equation λ+ k = 0.



Case n = 2

dA
dt

= − kA2

−
∫

1
A2 dA = k

∫
dt

1
A

= kt +
1

A0

A(t) =
A0

1 + A0kt

Solution has sense for all positive times.



Illustration

On the picture, the situation for A0 = 2 and k = 1 is depicted
for chemical reaction of order zero, one and two.
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